Load Impact Analysis Towards Power Loss in Distribution Substation in Wlingi District

Tony Agus Setyawan, yuni rahmawati

Abstract


This research aimed to find: (1) the distribution substations configuration in Kesamben Feeder, Wlingi District, (2) how much was the loading in those distribution substations, (3) how much load imbalance in the distribution substation’s load, and (4) how much was the power loss towards the imbalance load. This research used descriptive analysis by analyzing the loading imbalance towards the power loss of distribution substation in one feeder. The results showed that the higher percentage of loading imbalance meant higher power loss. However, although an imbalance percentage was more significant than a smaller percentage, the power loss that occurred might be more substantial due to the probable higher loading percentage so that the power loss in the substation was also influenced by the loading value, apart from the load imbalance.

Full Text:

PDF

References


F. Corcelli et al., “Sustainable urban electricity supply chain – Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life,” Ecol. Indic., vol. 94, pp. 37–51, Nov. 2018, doi: 10.1016/j.ecolind.2016.03.028.

P. Gasser et al., “Comprehensive resilience assessment of electricity supply security for 140 countries,” Ecol. Indic., vol. 110, p. 105731, Mar. 2020, doi: 10.1016/j.ecolind.2019.105731.

Y. Sun, L. Zhu, Z. Xu, L. Xiao, J. Zhang, and J. Zhang, “Characteristic analysis and forecast of electricity supply and demand in APEC,” Glob. Energy Interconnect., vol. 2, no. 5, pp. 413–422, Oct. 2019, doi: 10.1016/j.gloei.2019.11.016.

E. F. Ferreira and J. D. Barros, “Faults Monitoring System in the Electric Power Grid of Medium Voltage,” Procedia Comput. Sci., vol. 130, pp. 696–703, 2018, doi: 10.1016/j.procs.2018.04.123.

G. Huang, E. F. Fukushima, J. She, C. Zhang, and J. He, “Estimation of sensor faults and unknown disturbance in current measurement circuits for PMSM drive system,” Measurement, vol. 137, pp. 580–587, Apr. 2019, doi: 10.1016/j.measurement.2019.01.076.

S. Ekici, “Classification of power system disturbances using support vector machines,” Expert Syst. Appl., vol. 36, no. 6, pp. 9859–9868, Aug. 2009, doi: 10.1016/j.eswa.2009.02.002.

S.-J. Huang and C.-T. Hsieh, “Feasibility of fractal-based methods for visualization of power system disturbances,” Int. J. Electr. Power Energy Syst., vol. 23, no. 1, pp. 31–36, Jan. 2001, doi: 10.1016/S0142-0615(00)00036-3.

E. G. Ribeiro et al., “Real-time system for automatic detection and classification of single and multiple power quality disturbances,” Measurement, vol. 128, pp. 276–283, Nov. 2018, doi: 10.1016/j.measurement.2018.06.059.

N. Stringer, N. Haghdadi, A. Bruce, Jenny. Riesz, and I. MacGill, “Observed behavior of distributed photovoltaic systems during major voltage disturbances and implications for power system security,” Appl. Energy, vol. 260, p. 114283, Feb. 2020, doi: 10.1016/j.apenergy.2019.114283.

K. Chandram, N. Subrahmanyam, and M. Sydulu, “Equal embedded algorithm for economic load dispatch problem with transmission losses,” Int. J. Electr. Power Energy Syst., vol. 33, no. 3, pp. 500–507, Mar. 2011, doi: 10.1016/j.ijepes.2010.12.002.

K. Chandram, N. Subrahmanyam, and M. Sydulu, “Equal embedded algorithm for economic load dispatch problem with transmission losses,” Int. J. Electr. Power Energy Syst., vol. 33, no. 3, pp. 500–507, Mar. 2011, doi: 10.1016/j.ijepes.2010.12.002.

A. Mohamed Imran and M. Kowsalya, “A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using Fireworks Algorithm,” Int. J. Electr. Power Energy Syst., vol. 62, pp. 312–322, Nov. 2014, doi: 10.1016/j.ijepes.2014.04.034.

Vol. 1, No. 1, January 2019, pp. 27-33

N. Visali, M. S. Reddy, and M. S. K. Reddy, “Economic load dispatch of thermal power plants using evolution technique including transmission losses,” in 2014 International Conference on Advances in Electrical Engineering (ICAEE), Vellore, India, 2014, pp. 1–5, doi: 10.1109/ICAEE.2014.6838514.

M. Yazdani-Asrami, M. Taghipour-Gorjikolaie, S. Mohammad Razavi, and S. Asghar Gholamian, “A novel intelligent protection system for power transformers considering possible electrical faults, inrush current, CT saturation and over-excitation,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 1129–1140, Jan. 2015, doi: 10.1016/j.ijepes.2014.08.008.

O. Arguence and F. Cadoux, “Sizing power transformers in power systems planning using thermal rating,” Int. J. Electr. Power Energy Syst., vol. 118, p. 105781, Jun. 2020, doi: 10.1016/j.ijepes.2019.105781.

N. Greco, A. Parisi, N. Spina, E. Ragonese, and G. Palmisano, “Scalable lumped models of integrated transformers for galvanically isolated power transfer systems,” Integration, vol. 63, pp. 323–331, Sep. 2018, doi: 10.1016/j.vlsi.2018.01.005.

S. A. Evdokimov, Yu. N. Kondrashova, O. I. Karandaeva, and M. S. Gallyamova, “Stationary System for Monitoring Technical State of Power Transformer,” Procedia Eng., vol. 150, pp. 18–25, 2016, doi: 10.1016/j.proeng.2016.07.270.

H. Cui and K. Zhou, “Industrial power load scheduling considering demand response,” J. Clean. Prod., vol. 204, pp. 447–460, Dec. 2018, doi: 10.1016/j.jclepro.2018.08.270.

A. Naderipour, Z. Abdul-Malek, V. K. Ramachandaramurthy, A. Kalam, and M. R. Miveh, “Hierarchical control strategy for a three-phase 4-wire microgrid under unbalanced and nonlinear load conditions,” ISA Trans., vol. 94, pp. 352–369, Nov. 2019, doi: 10.1016/j.isatra.2019.04.025.

A. Pană, A. Băloi, and F. Molnar-Matei, “New method for calculating the susceptances of a balancing capacitive compensator for a three-phase four-wire distribution network,” Int. J. Electr. Power Energy Syst., vol. 115, p. 105414, Feb. 2020, doi: 10.1016/j.ijepes.2019.105414.




DOI: http://dx.doi.org/10.17977/um049v1i1p27-33

Refbacks

  • There are currently no refbacks.


Frontier Energy System and Power Engineering (FESPE), e-ISSN: 2720-9598

Flag Counter

View My Stats