Sintesis dan Karakterisasi Magnesium/Grafena Berlapis Nano (Mg/GBN)
Abstract
Sejak grafena berhasil diisolasi pada tahun 2004, material ini telah banyak digunakan sebagai perangkat penyimpanan energi elektrokimia dan sejumlah aplikasi lainnya. Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi dan ukuran partikel logam Mg terhadap struktur, morfologi, dan konduktivitas listrik Mg/GBN. Penelitian ini bersifat eksperimen laboratorium dan deskriptif. GBN disintesis melalui metode Hummers termodifikasi dan Mg 10, 20, 30 dan 40 % massa/GBN disintesis melalui metode impregnasi dengan menggunakan kristal MgCl2.6H2O sebagai prekursor. Karakterisasi yang dilakukan terhadap masing-masing material dengan menggunakan XRD, SEM-EDX dan Konduktometer berhasil membuktikan bahwa permukaan grafena mampu mereduksi ion logam Mg2+ menjadi Mg0 dan mampu mengendalikan distribusi ukuran dan persebaran partikel logam Mg yang terdeposit pada permukaan lembaran grafena. Sementara itu, partikel logam Mg yang berhasil terdeposit mampu menghambat terjadinya aglomerasi dan penumpukan kembali lembaran grafena sehingga mampu meningkatkan mobilitas elektron dan konduktivitas listrik grafena.
Keywords
Full Text:
PDFReferences
Al Hassan, M.R., Sen, A., Zaman, T., Mostari, M.S. 2019. Emergence of graphene as a promising anode material for rechargeable batteries: a review. Materials Today Chemistry, 11, 225–243.
Dedkov, Y., Voloshina, E. 2015. Graphene growth and properties on metal substrates. J Phys: Condens. Matter, 27, 1-28.
El-Kady, M.F., Strong, V., Dubin, S., Kaner, R.B., 2012. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science, 335, 1326-1330.
Guo, Q., Zeng, W., Liu, S.L., Li, Y.Q., Xu, J.Y., Wang, J.X., Wang, Y. 2020. Recent developments on anode materials for magnesium-ion batteries: a review. Rare Metal, 40, 290-308.
Hanifah, M. F. R., Aziz, M., Jaafar, J., Ismail, A.F. 2015. Synthesis of Graphene Oxide Nanosheets via Modified Hummers’ Method and Its Physicochemical Properties. Jurnal Teknologi, 74(1), 195–98.
Kakei, K., Esrafili, M., Egsani, A. 2019. Graphene Surfaces. 1st edition. Interface Science and Technology. Academis Press.
Khan, M., Tahir, M.N., Adil, S.F., Khan, H.U., Siddiqui, M.R.H., Al-warthan, A.A., Tremel, W. 2015. Graphene Based Metal and Metal Oxide Nanocomposites: Synthesis, Properties and Their Applications. Journal of Materials Chemistry A, 3(37), 18753-18808.
Kozlov, S.M., Viñes, F., Görling, A. 2011. Bandgap Engineering of Graphene by Physisorbed Adsorbates. Advanced Materials, 23, 2638–2643.
———, 2012. Bonding Mechanisms of Graphene on Metal Surfaces. Journal of Physical Chemistry C, 116(13), 7360–7366.
Li, Z., Ge, X., Li, C., Dong, S., Tang, R., Wang, C., Zhang, Z., Yin, L. 2020. Rational Microstructure Design on Metal–Organic Framework Composites for Better Electrochemical Performances: Design Principle, Synthetic Strategy, and Promotion Mechanism. Small Methods, 4, 1900756.
Liu, X., Wang, C.Z., Hupalo, M., Lin, H.Q., Ho, K.M., Tringides, M.C., 2013. Metals on Graphene: Interactions, Growth Morphology, and Thermal Stability. Crystals, 3(1), 79-111.
Malyala, L., Thatipamula, S., Jetti, V.R. 2019. Magnesium–Graphene Composite Coated on SS Mesh as Cathode Material for Rechargeable Magnesium ion Battery. Transactions of the Indian Institute of Metals, 72, 2503–2510.
Munir, K., Wen, C., Li, Y. 2020. Graphene Nanoplatelets-Reinforced Magnesium Metal Matrix Nanocomposites with Superior Mechanical and Corrosion Performance for Biomedical Applications. Journal of Magnesium and Alloys, 8, 269-290.
Nuriana, 2017. Analisis Pengaruh Waktu Sputtering Pd dan Ni pada Sintesis Material Elektrokatalis Berbahan Pd-Ni/Graphene terhadap Unjuk Kerja Direct Methanol Fuel Cell (DMFC). Jurnal ITS, 6(1), 1-6.
Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E. 2006. Controlling the Electronic Structure of Bilayer Graphene. Science, 313, 951-954.
Olabi, A.G., Abdelkareem, M.A., Wilberforce, T., Sayed, E.T. 2020. Application of Graphene in Energy Storage Device. Renewable and Sustainable Energy Reviews, 135, 110026.
Olsson, E., Hussain, T., Karton, A., Cai, Q. 2020. The Adsorption and Migration Behavior of Divalent Metals (Mg, Ca, and Zn) on Pristine and Defective Graphene. Carbon, 163, 276-287.
Orikasa, Y., Masese, T., Koyama, Y., Mori, T., Hattori, M., Yamamoto, K., Uchimoto, Y. 2014. High energy density rechargeable magnesium battery using earth- abundant and non-toxic elements. Scientific Reports, 4(1), 5622.
Qi, W., Shapter, J.G., Wu, Q., Yin, T., Gao, G., Cui, D. 2017. Nanostructured Anode Materials for Lithium-ion Batteries: Principle, Recent Progress and Future Perspectives. Journal of Materials Chemistry A, 5, 19521–19540.
Rashad, M., Pan, F., Tang, A., Asif, M., She, J., Gou, J., Mao, J., Hu, H. 2015. Development of Magnesium-Graphene Nanoplatelets Composite. Journal of Composite Materials, 49, 285-293.
Ratih, D., Siburian, R., Andriayani. 2018. The Performance of Graphite/N-Graphene and Graphene/N-Graphene as Electrode in Primary Cell Batteries. Rasayan Journal of Chemistry, 11(4), 1649-1656.
Samuels, A.J., Carey, J.D. 2013. Molecular Doping and Band-Gap Opening of Bilayer Graphene. ACS Nano, 7(3), 2790–2799.
Serraon, A.C.F., Rosario, J.A.D.D., Chuang, P.Y.A., Chong, M.N., Morikawa, Y., Padama, A.A.B., Ocon J.D. 2021. Alkaline Earth Atom Doping-Induced Changes in the Electronic and Magnetic Properties of Graphene: A Density Functional Theory Study. RSC Advances, 11, 6268-6283.
Siburian, R., Nakamura, J. 2012. Formation Process of Pt Subnano-Clusters on Graphene Nanosheets. The Journal of Physical Chemistry C, 116(43), 22947- 22953.
Siburian, R., Sihotang, H., Raja, S.L., Supeno, M., Simanjuntak, C. 2018. New Route to Synthesize of Graphene Nano Sheets. Orient J Chem, 34(1).
Simanjuntak, C., Siburian, R., Marpaung, H., Tamrin. 2020. Properties of Mg/Graphite and Mg/Graphene as Cathode Electrode on Primary Cell Battery. Heliyon, 6, e03118.
Tachikawa, H., Iyama, T., Kawabata, H. 2009. MD simulation of the interaction of magnesium with graphene. Thin Solid Films, 518(2), 877–879.
Tayyab, M., Hussain, A., Asif, Q. A., and Adil, W. 2020. Band-Gap Tuning of Graphene by Mg Doping and Adsorption of Br and Be on Impurity: A DFT Study. Computational Condensed Matter, 23, e00469.
Tiwari, S.K., Sahoo, S., Wang, N., Huczko, A. 2020. Graphene Research and their Outputs: Status and Prospect. Journal of Science: Advanced Materials and Devices, 5, 10-29.
Walter, M., Kovalenko, M. V., Kravchyk, K. V. 2020. Challenges and Benefits of Post-Lithium-ion Batteries. New Journal of Chemistry. 44, 1677-1683.
Wang, C., Xu, J., Yuen, M.F., Zhang, J., Li, Y., Chen, X., Zhang, W. 2014. Hierarchical Composite Electrodes of Nickel Oxide Nanoflake 3D Graphene for High-Performance Pseudocapacitors. Advanced Functional Materials, 24, 6372-6380.
Xia, G., Tan, Y., Wu, F., Fang, F., Sun, D., Guo, Z., Huang, Z., Yu, X.M. 2016. Graphene-Wrapped Reversible Reaction for Advanced Hydrogen Storage. Nano Energy, 26, 488-495.
Zhou, C., Szpunar, J.A., Cui, X. 2016. Synthesis of Ni/Graphene Nanocomposite for Hydrogen Storage. ACS Applied Materials and Interfaces, 8, 15232-15241.
DOI: http://dx.doi.org/10.17977/um0260v5i12021p027
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Fajar Hutagalung, Rikson Siburian, Ab Malik Marwan Ali

This work is licensed under a Creative Commons Attribution 4.0 International License.
References Tool:
View My Stats