Efek promosi Fe pada katalis dua logam Ni-Fe terembankan pada aluminium hidroksida pada hidrogenasi selektif asam levulinat menjadi gamma-valerolakton dalam air

Rodiansono R. Rodiansono, Faisal F. Faisal, Tantriati T. Tantriati, Rahmidah Ulfah R. Rahmida Ulfah, Abdullah A. Abdullah, Astuti Maria Dewi

Abstract


Efek promosi penambahan logam Fe pada Raney Ni terembankan pada aluminium hidroksida (Raney Ni/AlOH) untuk membentuk katalis Ni-Fe(x)/AlOH (x = rasio molar Ni/Fe) pada reaksi hidrogenasi selektif asam levulinat menjadi gamma-valerolakton telah dipelajari secara sistematis. Katalis Ni-Fe(x)/AlOH telah berhasil disintesis menggunakan metode poliol dalam kondisi hidrotermal dengan variasi nilai x = 1,0; 1,8; 2,3; 2,8; dan 3,0 berdasarkan perhitungan bahan awal. Hasil karakterisasi XRD menunjukkan bahwa posisi puncak Ni(111) pada sudut difraksi 2q = 44,84° mengalami pergeseran ke sudut difraksi yang lebih kecil pada sudut difraksi 2θ = 44,54o-44,11o yang merupakan puncak difraksi karakterisitik untuk alloy dua logam Ni-Fe(111). Penambahan sebanyak 3,0 mmol Fe menghasilkan katalis Ni-Fe(3,0)/AlOH meningkatkan secara signifikan aktivitas dan selektifitasnya pada reaksi hidrogenasi asam levulinat (LA) menjadi γ-valerolakton (GVL) pada suhu 130oC, tekanan awal gas H2 3,0 MPa, dan waktu reaksi 1,5 jam.  Kenaikan suhu reaksi, perpanjangan waktu reaksi, dan reduksi dengan gas H2 terhadap katalis pada 450oC selama 1,5 jam mampu meningkatkan konversi LA dan yield GVL hingga 100%. Sebaliknya peningkatan jumlah Fe yang ditambahkan hingga 9.0 mmol menyebabkan aktifitas dan selektiftas katalis menurun secara gradual. Katalis Ni-Fe(3,0)/AlOH bisa digunakan hingga dua kali pengulangan tanpa berkurang aktivitas dan selektifitasnya.

Keywords


katalis dua logam Ni-Fe; hidrogenasi selektif; asam levulinat; gamma-valerolakton

Full Text:

PDF

References


Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098.

Petersen, G.R.; Bozell, J.J. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554.

Horváth, I.T.; Mehdi, H.; Fábos, V.; Boda, L.; Mika, L.T. γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chem. 2008, 10, 238–242.

Bozell, J.J.; Moens, L.; Elliott, D.C.; Wang, Y.; Neuenscwander, G.G.; Fitzpatrick, S.W.; Bilski, R.J.; Jarnefeld, J.L. Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recycl. 2000, 28, 227–239.

Serrano-Ruiz, J.C.; West, R.M.; Dumesic, J.A. Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 79–100.

Patel, A.D.; Serrano-Ruiz, J.C.; Dumesic, J.A.; Anex, R.P. Techno-economic analysis of 5-nonanone production from levulinic acid. Chem. Eng. J. 2010, 160, 311–321.

Heeres, H.J.; Tang, Z.; Bruijnincx, P.C.A.; Weckhuysen, B.M.; Ftouni, J.; Piskun, A.S. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts: Effect of catalyst synthesis protocols on activity. Appl. Catal. A Gen. 2017, 549, 197–206.

Deng, J.; Wang, Y.; Pan, T.; Xu, Q.; Guo, Q.X.; Fu, Y. Conversion of carbohydrate biomass to γ-valerolactone by using water-soluble and reusable iridium complexes in acidic aqueous media. ChemSusChem 2013, 6, 1163–1167.

Du, X.L.; Bi, Q.Y.; Liu, Y.M.; Cao, Y.; Fan, K.N. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts. ChemSusChem 2011, 4, 1838–1843.

Bourne, R.A.; Stevens, J.G.; Ke, J.; Poliakoff, M. Maximising opportunities in supercritical chemistry: The continuous conversion of levulinic acid to γ-valerolactone in CO2. Chem. Commun. 2007, 4632–4634.

Galletti, A.M.R.; Antonetti, C.; De Luise, V.; Martinelli, M. A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem. 2012, 14, 688–694.

Wettstein, S.G.; Bond, J.Q.; Alonso, D.M.; Pham, H.N.; Datye, A.K.; Dumesic, J.A. RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone. Appl. Catal. B Environ. 2012, 117–118, 321–329.

De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347.

Ferrando, R.; Jellinek, J.; Johnston, R.L. ChemInform Abstract: Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. ChemInform 2008, 39.

Tomishige, K.; Nakagawa, Y.; Tamura, M. Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chem. 2017, 19, 2876–2924.

R. Rodiansono; Hara, T.; Ichikuni, N.; Shimazu, S. A novel preparation method of nisn alloy catalysts supported on aluminium hydroxide: Application to chemoselective hydrogenation of unsaturated carbonyl compounds. Chem. Lett. 2012, 41, 769–771.

R. Rodiansono; Khairi, S.; Hara, T.; Ichikuni, N.; Shimazu, S. Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts. Catal. Sci. Technol. 2012, 2, 2139–2145.

R. Rodiansono; Astuti, M.D.; Hara, T.; Ichikuni, N.; Shimazu, S. Efficient hydrogenation of levulinic acid in water using a supported Ni–Sn alloy on aluminium hydroxide catalysts. Catal. Sci. Technol. 2016, 6, 2955–2961.

Putro, W.S.; Hara, T.; Ichikuni, N.; Shimazu, S. Efficiently Recyclable and Easily Separable Ni-Fe Alloy Catalysts for Chemoselective Hydrogenation of Biomass-derived Furfural. Chem. Lett. 2016, 46, 149–151.

Putro, W.S.; Kojima, T.; Hara, T.; Ichikuni, N.; Shimazu, S. Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts. Catal. Sci. Technol. 2017, 7, 3637–3646.

Wijaya, H.W.; Sato, T.; Tange, H.; Hara, T.; Ichikuni, N.; Shimazu, S. Hydrogenolysis of Furfural into 1,5-Pentanediol by Employing Ni-M (M = Y or La) Composite Catalysts. Chem. Lett. 2017, 46, 744–746.

Rodiansono, R.; Hara, T.; Ichikuni, N.; Shimazu, S. Development of nanoporous ni-sn alloy and application for chemoselective hydrogenation of furfural to furfuryl alcohol. Bull. Chem. React. Eng. Catal. 2014, 9, 53–59.

Petro; A new alumina-supported, not pyrophoric Raney-type Ni-catalyst; Applied Catalysis A General 190 (2000) 73–86.pdf.




DOI: http://dx.doi.org/10.17977/um0260v3i12019p001

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Rodiansono R. Rodiansono, Faisal F. Faisal, Tantriati T. Tantriati, Rahmidah Ulfah R. Rahmida Ulfah, Abdullah A. Abdullah, Astuti Maria Dewi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

     

 

JC-T Stats