Inoculation of IAA producing endophytic bacteria on the growth of mung bean (Vigna radiata L.) Var. vima2

Fauzi Akhbar Anugrah, Desi Yulia Safitri

Abstract


The interaction of endophytic bacteria with their host plants through a direct mechanism can stimulate growth by increasing nutrient absorption and modulating phytohormones such as  IAA (Indole-3-acetic acid). A previous study revealed the IAA production ability by endophytic bacteria from Cinchona (Cinchona Iedgeriana Moens.) plant. The most optimum IAA producer from the previous study will be analyzed for the effect on plant growth. The purpose of this study was to test and analyze the effect of IAA-producing endophytic bacteria inoculation obtained from the roots of cinchona on the growth parameter of mung bean seedling. The highest IAA-producing bacteria, isolate with code a15 has been compared to the MC Farland 0.5 and MC Farland 1 standards are used to soak the mung bean seeds for 1 hour and being planted on sterile soil media in six replications. The inoculation of MC Farland 0.5 equivalent bacteria showed the increased growth parameters of mung bean seedling, such as height, wet weight, and the number of leaves. Furthermore, the concentration of bacterial suspension that has been equalized with the Mc Farland 1 shows the inhibition effect of the growth.

Full Text:

PDF

References


Ahmed, A., & Hasnain, S. (2010). Auxin-producing Bacillus sp.: Auxin quantification and effect on the growth of Solanum tuberosum. Pure and Applied Chemistry, 82(1), 313–319. https://doi.org/10.1351/PAC-CON-09-02-06

Brígido, C., Nascimento, F. X., Duan, J., Glick, B. R., & Oliveira, S. (2013). Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. Reduces the negative effects of salt stress in chickpea. FEMS Microbiology Letters, n/a-n/a. https://doi.org/10.1111/1574-6968.12294

Chaturvedi, H., & Singh, V. (2016). Potential of Bacterial Endophytes as Plant Growth Promoting Factors. Journal of Plant Pathology & Microbiology, 7(9). https://doi.org/10.4172/2157-7471.1000376

Devi, K. A., Pandey, P., & Sharma, G. D. (2016). Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI Journal of Biosciences, 23(4), 173–180. https://doi.org/10.1016/j.hjb.2016.12.006

Díaz Herrera, S., Grossi, C., Zawoznik, M., & Groppa, M. D. (2016). Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiological Research, 186–187, 37–43. https://doi.org/10.1016/j.micres.2016.03.002

Etesami, H., Alikhani, H. A., & Hosseini, H. M. (2015). Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX, 2, 72–78. https://doi.org/10.1016/j.mex.2015.02.008

Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2015.1127500

Herlina, L., Pukan, K. K., & Mustikaningtyas, D. (2016). KAJIAN BAKTERI ENDOFIT PENGHASIL IAA (INDOLE ACETIC ACID) UNTUK PERTUMBUHAN TANAMAN. 14, 8.

Iswanto, R. (n.d.). VIMA 2 DAN VIMA 3, VARIETAS KACANG HIJAU HASIL TINGGI, UMUR GENJAH, DAN MASAK SEREMPAK. 12.

Ljung, K. (2013). Auxin metabolism and homeostasis during plant development. Development, 140(5), 943–950. https://doi.org/10.1242/dev.086363

Ludwig-Müller, J. (2011). Auxin conjugates: Their role for plant development and in the evolution of land plants. Journal of Experimental Botany, 62(6), 1757–1773. https://doi.org/10.1093/jxb/erq412

Majda, M., & Robert, S. (2018). The Role of Auxin in Cell Wall Expansion. International Journal of Molecular Sciences, 19(4), 951. https://doi.org/10.3390/ijms19040951

Perrot-Rechenmann, C. (2010). Cellular Responses to Auxin: Division versus Expansion. Cold Spring Harbor Perspectives in Biology, 2(5), a001446–a001446. https://doi.org/10.1101/cshperspect.a001446

Sauer, M., & Kleine-Vehn, J. (2011). AUXIN BINDING PROTEIN1: The Outsider. The Plant Cell, 23(6), 2033–2043. https://doi.org/10.1105/tpc.111.087064

Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A., & Oelmüller, R. (2005). The Endophytic Fungus Piriformospora indica Stimulates the Expression of Nitrate Reductase and the Starch-degrading Enzyme Glucan-water Dikinase in Tobacco and Arabidopsis Roots through a Homeodomain Transcription Factor That Binds to a Conserved Motif in Their Promoters. Journal of Biological Chemistry, 280(28), 26241–26247. https://doi.org/10.1074/jbc.M500447200

Widowati, T., & Sukiman, H. (2013). Potency of Endophyte Bacterium Isolated from Shorea selanica on Producing IAA Hormone and Supporting the Growth of Soybean. 17(2), 7.

Wong, W. S., Tan, S. N., Ge, L., Chen, X., & Yong, J. W. H. (2015). The Importance of Phytohormones and Microbes in Biofertilizers. In D. K. Maheshwari (Ed.), Bacterial Metabolites in Sustainable Agroecosystem (Vol. 12, pp. 105–158). Springer International Publishing. https://doi.org/10.1007/978-3-319-24654-3_6

Zhao, K., Penttinen, P., Guan, T., Xiao, J., Chen, Q., Xu, J., Lindström, K., Zhang, L., Zhang, X., & Strobel, G. A. (2011). The Diversity and Anti-Microbial Activity of Endophytic Actinomycetes Isolated from Medicinal Plants in Panxi Plateau, China. Current Microbiology, 62(1), 182–190. https://doi.org/10.1007/s00284-010-9685-3




DOI: http://dx.doi.org/10.17977/um061v2i22018p54-60

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Ilmu Hayat

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Jurnal Ilmu Hayat Stats