METAKOGNISI SISWA DALAM PEMECAHAN MASALAH TRIGONOMETRI

Dimas Femy Sasongko, Subanji Subanji, I Made Sulandra

Abstract


Metacognition is an influencing factor in mathematical problem solving. The aim of this qualitative research is to comprehend metacognition from one student of High Problem Solving Achiever (HPSA) and one student of Low Problem Solving Achiever (LPSA) when solving trigonometry problems that focused on metacognitive awareness, metacognitive regulation, and metacognitive evaluation aspects. The finding indicates that in metacognitive awareness, LPSA has difficulty to model the problem. In metacognitive regulation, the global plan, local plan, and actions which composed by LPSA didn’t tend to the solution. In metacognitive evaluation, eventhough LPSA did lots of metacognition activities but it didn’t guarantee achieving correct solution

Full Text:

[Download PDF]

References


Artzt, A. F. and Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9(2), 137-175.

Demircioglu, H., Argun, Z., & Bulut, S. 2010. A Case Study: Assessment of Preservice Secondary Mathematics Teacher’s Metacognitive Behaviour in the Problem-Solving Process. ZDM Mathematics Education. Vol.42, 493-502.

Erbas, A.K. & Okur, S. 2012. Researching Students’ Strategies, Episodes, and Metacognitions in Mathematical Problem Solving. Springer Science.

Garofalo, J. & Lester, F.K. 1985. Metacognition, Cognitive Monitoring, and Mathematical Performance. NCTM: Journal for Research in Mathematics Education. Vol.16, No.3, 163-176.

Khatib, M. & Hosseinpur, R.M. 2011. On the Validity of the Group Embedded Figure Test. Journal of Language Teaching and Research. Vol.2, No.3, 640-628.

Lester, F.K., 2007. Second Handbook of Research on Mathematics Teaching and Learning. USA: Information Age Publishing Inc.

Moleong, L.J. 2008. Metodologi Penelitian Kualitatif. Bandung: Remaja Rosdakarya

Sasongko, D.F. 2016. Profil Pemecahan Masalah Trigonometri Siswa Bergaya Kognitif Field-Independent dan Field-Dependent. Makalah. Disajikan pada Seminar Nasional Matematika dan Pembelajarannya tanggal 13 Agustus 2016 di Universitas Negeri Malang.

Schneider, W. & Artelt, C. 2010. Metacognition and Mathematics Education. ZDM Mathematics Education. Vol.42, 149-161.

Siswono, T.Y.E. 2008. Model Pembelajaran Matematika Berbasis Pengajuan dan Pemecahan Masalah untuk Meningkatkan Kemampuan Berpikir Kreatif. Surabaya: Unesa University Press.

Stillman, G.A. & Galbraith, P.L. 1998. Applying Mathematics With Real World Connections: Metacognitive Characteristics of Secondary Students. Educational Studies in Mathematics. Vol .36, 157-189.

Veenman, M.V.J., Van Hout-Wolters, B.H.A.M., & Afflerbach, P. 2006. Metacognition and Learning: Conceptual and Methodological Considerations. Metacognition Learning. Vol.1, p3-14

Wilson, J. & Clarke, D. 2004. Towards the Modelling of Mathematical Metacognition. Mathematics Education Research Journal. Vol.16, No. 2, p25-48.




DOI: http://dx.doi.org/10.17977/um076v2i22018p82-95

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Dimas Femy Sasongko, Subanji Subanji, I Made Sulandra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JKPM Indexed By:

        

 


Jurnal Kajian Pembelajaran Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Creative Commons License

View My Stats