Synthesis and Applications of Hematite α-Fe2O3 : a Review

Muhamad Muhajir, Poppy Puspitasari, Jeefferie Abdul Razak


This article reviewed the hematite α-Fe2O3, which focuses on its material properties, nanostructures, synthesis techniques, and its numerous applications. Researchers prepared the hematite nanostructure using the synthesis methods, such as hydrothermal, and, further, enhanced it by improving the techniques to accommodate the best performance for specific applications and to explore new applications of hematite in humidity sensing.


Application, hematite, structure, synthesis

Full Text:



A. Zeleňáková, V. Zeleňák, Š. Michalík, J. Kováč, and M. W. Meisel, ‘Structural and magnetic properties of CoO-Pt core-shell nanoparticles’, Physical Review B, vol. 89(10), pp. 104417, 2014, doi: 10.1103/PhysRevB.89.104417.

M. Tadic, M. Panjan, V. Damnjanovic, and I. Milosevic, ‘Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method’, Applied Surface Science, vol. 320, pp. 183-187, 2014, doi: 10.1016/j.apsusc.2014.08.193.

N. Kumar, A. Gaur, and R. K. Kotnala, ‘Stable Fe deficient Sr2Fe1−δMoO6 (0.0⩽δ⩽0.10) compound’, Journal of Alloys and Compounds, vol. 601, pp. 245-250, 2014, doi: 10.1016/j.jallcom.2014.02.173.

B. K. Pandey, A. K. Shahi, J. Shah, R. K. Kotnala, and R. Gopal, ‘Optical and magnetic properties of Fe2O3 nanoparticles synthesized by laser ablation/fragmentation technique in different liquid media’, Applied Surface Science, vol. 289, pp. 462-471, 2014, doi: 10.1016/j.apsusc.2013.11.009.

W. R. W. Ahmad, M. H. Mamat, A. S. Zoolfakar, Z. Khusaimi, and M. Rusop, ‘A review on hematite α-Fe2O3 focusing on nanostructures, synthesis methods and applications’, in Proceedings - 14th IEEE Student Conference on Research and Development: Advancing Technology for Humanity, SCOReD 2016, 2017, doi: 10.1109/SCORED.2016.7810090.

V. A. N. De Carvalho, R. A. D. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, ‘Highly oriented hematite nanorods arrays for photoelectrochemical water splitting’, Journal of Power Sources, vol. 205, pp. 525-529, 2012, doi: 10.1016/j.jpowsour.2012.01.093.

P. Sun, C.Wang, X. Zhou, P. Cheng, K. Shimone, G. Lu, N.Yamazoe, ‘Cu-doped α-Fe2O3hierarchical microcubes: Synthesis and gas sensing properties’, Sensors and Actuators, B: Chemical, vol. 193, pp. 616-622, 2014, doi: 10.1016/j.snb.2013.12.015.

S. Grigorescu,C-Y Lee, K. Lee, S. Albu, P. Schemuki, ‘Thermal air oxidation of Fe: Rapid hematite nanowire growth and photoelectrochemical water splitting performance’, Electrochemistry Communications, vol. 23, pp. 59-62, 2012, doi: 10.1016/j.elecom.2012.06.038.

Z. Zhang, M. F. Hossain, and T. Takahashi, ‘Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation’, Applied Catalysis B: Environmental, vol. 95 (3–4), pp. 423-429, 2010, doi: 10.1016/j.apcatb.2010.01.022.

C. Zhu, C. Li, M. Zheng, and J. J. Delaunay, ‘Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation’, ACS Applied Materials and Interfaces, vol. 7(40), pp.22355-22363, 2015. doi: 10.1021/acsami.5b06131.

R. Rajendran, Z. Yaakob, M. Pudukudy, M. S. A. Rahaman, and K. Sopian, ‘Photoelectrochemical water splitting performance of vertically aligned hematite nanoflakes deposited on FTO by a hydrothermal method’, Journal of Alloys and Compounds, vol. 608, pp. 207-212. 2014, doi: 10.1016/j.jallcom.2014.04.105.

C. Colombo, G.A.P. Palumbo, R. Angelico, ‘Influence of hydrothermal synthesis conditions on size, morphology and colloidal properties of Hematite nanoparticles’, Nano-Structures and Nano-Objects, vol. 2, pp. 19-27, 2015, doi: 10.1016/j.nanoso.2015.07.004.

C. Wu, P. Yin, X. Zhu, C. Ouyang, and Y. Xie, ‘Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery and gas sensors’, Journal of Physical Chemistry B, vol. 110 (36), pp. 17806-17812, 2006.

G. Gurudaya, SY. Siam, M.H. Kumar, P.S. Bassi, ‘Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese’, ACS Applied Materials and Interfaces, vol 6(8), pp. 5852-9, 2014, doi: 10.1021/am500643y.

H. J. Song, Y. Sun, and X. H. Jia, ‘Hydrothermal synthesis, growth mechanism and gas sensing properties of Zn-doped α-Fe2O3 microcubes’, Ceramics International, Part A, vol. 41(10), pp. 13224-13231, 2015, doi: 10.1016/j.ceramint.2015.07.100.

Z. Li, X. Lai, H. Wang, D. Mao, C. Xing, and D. Wang, ‘Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine’, Nanotechnology, vol 20(4), 2009, doi: 10.1088/0957-4484/20/24/245603.

H. K. Mulmudi, N. Mathews, X.C. Dou, L.F. Xi, S.S. Pramana, Y.M. Lam, S.G. Mhaisalkar, ‘Controlled growth of hematite (α-Fe2O3) nanorod array on fluorine doped tin oxide: Synthesis and photoelectrochemical properties’, Electrochemistry Communications, vol. 13(9), pp. 951-954, 2011, doi: 10.1016/j.elecom.2011.06.008.

T. S. Atabaev, ‘Facile hydrothermal synthesis of flower-like hematite microstructure with high photocatalytic properties’, Journal of Advanced Ceramics, vol. 4, pp.61–64, 2015, doi: 10.1007/s40145-015-0133-5.

J. Y. Kim, G. Magesh, D. H. Youn, J-W. Jang, J. Kubota, K. Domen & J. S. Lee, ‘Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting’, Scientific Reports, Article number: 2681, 2013, doi: 10.1038/srep02681.

F. Zhang, H.Yang, X.Xie, L.L. Lihui, Z.Jie, Y.H. Zhao, B. Liu, ‘Controlled synthesis and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes’, Sensors and Actuators, B: Chemical, vol. 141(2), pp. 381-389, 2009, doi: 10.1016/j.snb.2009.06.049.

S. Shen, J. Zhou, C.L. Dong, P. Guo, S.S. Mao, ‘Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting’, Scientific Reports, vol 4, p. 6627, 2014, doi: 10.1038/srep06627.

S. S. Shinde, R. A. Bansode, C. H. Bhosale, and K. Y. Rajpure, ‘Physical properties of hematite -Fe2O3 thin films: Application to photoelectrochemical solar cells’, Journal of Semiconductors, 2011, doi: 10.1088/1674-4926/32/1/013001.

H. Farahani, R. Wagiran, and M. N. Hamidon, ‘Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review’, Sensors (Switzerland). vol. 14(5), pp. 7881-7939, 2014, doi: 10.3390/s140507881.

Z. Chen and C. Lu, ‘Humidity Sensors: A Review of Materials and Mechanisms’, Sensor Letters, vol. 3(4). pp. 274-295, 2005, doi: 10.1166/sl.2005.045.

M. Parthibavarman, V. Hariharan, and C. Sekar, ‘High-sensitivity humidity sensor based on SnO2nanoparticles synthesized by microwave irradiation method’, Materials Science and Engineering C, vol. 31(50, pp. 840-844, 2011, doi: 10.1016/j.msec.2011.01.002.

P. G. Su and L. N. Huang, ‘Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films’, Sensors and Actuators, B: Chemical, vol. 123(10), pp. 501-507, 2007, doi: 10.1016/j.snb.2006.09.052.

X. Q. Fu, C. Wang, H. C. Yu, Y. G. Wang, and T. H. Wang, ‘Fast humidity sensors based on CeO2 nanowires’, Nanotechnology, vol. 18(14), p.145503, 2007, doi: 10.1088/0957-4484/18/14/145503.

Q. Qi, T.Zhang, Q. Yu, H. Yang, ‘Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing’, Sensors and Actuators, B: Chemical, 133(2), pp. 638-643, 2008, doi: 10.1016/j.snb.2008.03.035.

A. S. Ismail, M.H. Mamat, N.D.Md. Sin, M.F.Malek, A.S.Zoolfakar, A.B.Suriani, A. Mohamed, M.K.Ahmad, M.Rusop, ‘Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol-gel immersion for room temperature, resistive-type humidity sensor applications’, Ceramics International, vol. 42 (8), pp. 9785-9795 2016, doi: 10.1016/j.ceramint.2016.03.071.

K. Narimani, F. D. Nayeri, M. Kolahdouz, and P. Ebrahimi, ‘Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods’, Sensors and Actuators, B: Chemical, vol. 224, pp. 338-343, 2016, doi: 10.1016/j.snb.2015.10.012.

M. Pelino, C. Cantalini, and M. Faccio, ‘Principles and Applications of Ceramic Humidity Sensors’, Active and Passive Electronic Components, volume 16, |article ID 91016, 1994, doi: 10.1155/1994/91016.

M. Pelino, C. Cantalini, H.-T. Sun, and M. Faccio, ‘Silica effect on [alpha]-Fe2O3 humidity sensor’, Sensors and Actuators B: Chemical, vol. 46(3), pp. 186-193, 1998, doi: 10.1016/s0925-4005(98)00113-0.

A. S. Afify, M. Ataalla, A. Hussain, J.-M. Tulliani, ‘Studying the effect of doping metal ions onto a crystalline hematite-based humidity sensor for environmental control’, Bulgarian Chemical Communications, vol. 48(2), pp. 297-302, 2016.

J. M. Tulliani, C. Baroni, L. Zavattaro, and C. Grignani, ‘Strontium-doped hematite as a possible humidity sensing material for soil water content determination’, Sensors (Switzerland), vol. 13(9), pp. 12070–12092, 2013, doi: 10.3390/s130912070.

T. A. Blank, L. P. Eksperiandova, and K. N. Belikov, ‘Recent trends of ceramic humidity sensors development: A review’, Sensors and Actuators, B: Chemical. vol. 228, pp. 416-442, 2016, doi: 10.1016/j.snb.2016.01.015.



  • There are currently no refbacks.

Copyright (c) 2019 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats