The Influence of the Reference Area of Aileron on the N2XX Aircraft Using Computational Fluid Dynamics

Siti Nur Rahmah, Gaguk Jatisukamto, Hary Sutjahjono


Aileron is a control surface that functions as a regulator of roll motion. The movements of the ailerons are opposite to the left and right sides. Previous studies have shown that graphs of hinge moment coefficient (Chm) values increases with increasing angle of attack. This study is to determine the aerodynamic characteristics of aileron by combining the surface area of the vane into the aileron by varying the aileron’s deflection. The calculation is performed using a numerical method in two dimensions (2D) commercial CFD simulation software. The results of the study concluded that the hinge moment coefficient for modified airfoil at δA = -20°, 0°, and 20° was -0.071, 0.078, and 0.177, respectively. These values are smaller when compared to Chm value in basic aileron that was -0.094, 0.095, and 0.201, respectively.


Aileron, computational fluid dynamics, hinge moment coefficient.

Full Text:



Badan Pusat Statistik, Statistik Indonesia, Badan Pusat Statistik, Jakarta. 2019.

Kementrian Perhubungan, Kriteria Penyelenggaraan Angkutan Udara Perintis di Indonesia, Available from:, 2016.

R. H. Barnard, and D. R. Philpott, Aircraft Flight 4th ed, Pearson Education Limited, Harlow, 2010.

Federal Aviation Administration (FAA), Pilot's Handbook of Aeronautical Knowledge, U.S. Department of Transportation, 2016.

G. Q. Zhang, S. C. M. Yu, and A. Chien, “Investigation of the Three-Dimensional Hinge Moment Characteristics Generated by the ONERA-M6 Wing with an Aileron”, Advanced in Mechanical Engineering, vol. 5, pp. 1-11. 2013.

K. A. Makarov and A. A. Pavlenko, “Numerical Investigation of an Aileron Hinge Moments and Effectiveness on a High Lift Wing Airfoil”, in 29th Congress of the International Council of the Aeronautical Sciences, Curran Associates Inc. 1-10.

D. Herdiana, S. T. Pinindriya, and R. Triwulandari, “Investigation of Aileron Hinge Moment of National Transport Aircraft Basic to Numeric Method”, in International Seminar on Aerospace Science and Technology III, Institute of Physics Publishing (IOP), 45-51.

G. Wijiatmoko, “Analisa Efektivitas Sudut Defleksi Aileron pada Pesawat Udara Nir Awak (PUNA) Alap-alap”, in Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 2017, ITN Malang, 1-6.

R. J. McGhee and W. D. Beasley, Wind-Tunnel Results for a Modified 17-Percent-Thick Low-Speed Airfoil Section, NASA TP-1919, 1981.

PT. Dirgantara Indonesia, Report Data PT. Dirgantara Indonesia, PT. Dirgantara Indonesia, Bandung, 2016.

D. C. Eleni, T. L. Athanasios, and M. P. Dionissios, “Evaluation of the Turbulence Models for the Simulation of the Flow over a National Advisory Committee for Aeronautics (NACA) 0012 Airfoil”, Journal of Mechanical Engineering Research, Portico, vol. 4(3), pp.100-111, 2012.

R. Ma and P. Liu, “Numerical Simulation of Low-Reynolds-Number and High-Lift Airfoil S1223”, in Proceedings of the World Congress on Engineering 2009, International Association of Engineers, 1-6.

A. W. E. Sadewo and H. Sasongko, “Studi Eksperimen dan Numerik Pengaruh Slat Clearance serta Slat Angle untuk Mengeliminasi Stall pada Airfoil "Studi Kasus pada Airfoil NACA 2412”, Jurnal Teknik ITS, 4(1), pp.108-113. 2015.

M. H. Amir, and Sarwono, “Analisa Nilai Hinge Moment Coefficient pada Pengaruh Bentuk Rudder Pesawat N-2XX dengan Variasi Defleksi Rudder 0°, 10°, dan 25° Berbasis Computational Fluid Dynamics”, Jurnal Teknik ITS, 7(2), pp.140-145, 2018



  • There are currently no refbacks.

Copyright (c) 2020 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats