Study on Predictive Maintenance of V-Belt in Milling Machines Using Machine Learning
Abstract
Towards industry 4.0, monitoring the degradation of machine tools’ components becomes a key feature so that smooth productivity is achieved. To preserve the functionality and performance of the machine tools, proper maintenance activities must be planned and carried out. V-belt is important component in machine tools that transmits power from the electric motor spindle in order to machine to work and cut desired material properly. The purpose of this research is to develop a predictive maintenance system for v-belt milling machine Krisbow 31N2F using machine learning. The machine learning algorithm models using multiple and simple linear regression algorithm was developed in an open-source program. The test results show that the machine learning model has a high accuracy value in both the training data and the testing data. The multiple linear regression model has MSE value of 5.8830x10-6 and MAE value of 0.002. The Simple linear regression model has an MSE value of 0.0004x10-6 and MAE value of 0.162. The results shows that the use of the linear regression algorithm as a support for determining the prediction of RUL v-belt milling machine model 31N2F (BS) is successfully carried out.
Keywords
Full Text:
PDFReferences
E. Brynjolfsson and A. McAfee, The Second Machine Age: work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company Inc., New York, United States, 2014.
H. B. Harja, T. Prakosa, S. Raharno, et al., “Development of tools utilization monitoring system on labor-intensive manufacturing industries,” in AIP Conference Proceedings, 2019, vol. 2187, doi: 10.1063/1.5138309.
J. Jędrzejewski and W. Kwaśny, “Discussion of Machine Tool Intelligence, Based on Selected Concepts and Research,” J. Mach. Eng., vol. 15, no. 4, pp. 5-26. 2015.
L. Sadasivam, A. Archenti, and U. Sandberg, “Machine tool ability representation: A review,” J. Mach. Eng., vol. 18, no. 2, pp. 5–16, 2018, doi: 10.5604/01.3001.0012.0919.
J. Lee, H. A. Kao, and S. Yang, “Service innovation and smart analytics for Industry 4.0 and big data environment,” in Procedia CIRP, vol. 16, pp. 3-8, 2014. doi: 10.1016/j.procir.2014.02.001.
P. Willoughby, M. Verma, A. P. Longstaff, and S. Fletcher, “A holistic approach to quantifying and controlling the accuracy, performance and availability of machine tools,” in Proceedings of the 36th International MATADOR Conference, pp. 313–316 2010, doi: 10.1007/978-1-84996-432-6_71.
P. Stodola and J. Stodola, “Model of predictive maintenance of machines and equipment,” Appl. Sci., vol. 10, no. 1, pp. 213, 2020, doi: 10.3390/app10010213.
M. Paolanti, L. Romeo, A. Felicetti, et al., “Machine Learning approach for Predictive Maintenance in Industry 4.0,” in 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2018, doi:10.1109/MESA.2018.8449150
J. Rodrigues, I. Costa, J. T. Farinha, M. Mendes, and L. Margalho, “Predicting motor oil condition using artificial neural networks and principal component analysis,” Eksploat. i Niezawodn., vol. 22, no. 3, pp. 440-448, 2020, doi: 10.17531/ein.2020.3.6.
W. Luo, T. Hu, Y. Ye, C. Zhang, and Y. Wei, “A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin,” Robot. Comput. Integr. Manuf., vol. 65, no. March, p. 101974, 2020, doi: 10.1016/j.rcim.2020.101974.
D. H. Kim, T. J.Y. Kim, X. Wang, et al., “Smart Machining Process Using Machine Learning: A Review and Perspective on Machining Industry,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 5, no. 4, pp. 555–568, 2018, doi: 10.1007/s40684-018-0057-y.
S. Cho, S. Asfour, A. Onar, and N. Kaundinya, “Tool breakage detection using support vector machine learning in a milling process,” Int. J. Mach. Tools Manuf., vol. 45, no. 3, pp. 241-249, 2005, doi: 10.1016/j.ijmachtools.2004.08.016.
D. Wu, C. Jennings, J. Terpenny, R. X. Gao, and S. Kumara, “A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests,” J. Manuf. Sci. Eng. Trans. ASME, vol. 139, no. 7, pp. 071018, 2017, doi: 10.1115/1.4036350.
D. M. D’Addona, A. M. M. S. Ullah, and D. Matarazzo, “Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing,” J. Intell. Manuf., vol. 28, no. 6, pp. 1285–1301, 2017, doi: 10.1007/s10845-015-1155-0.
C. Peng, L. Wang, and T. W. Liao, “A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine,” J. Sound Vib., vol. 354, pp. 118-131, 2015, doi: 10.1016/j.jsv.2015.06.011.
Y. Yuan, H. T. Zhang, Y. Wu, T. Zhu, and H. Ding, “Bayesian Learning-Based Model-Predictive Vibration Control for Thin-Walled Workpiece Machining Processes,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 509 - 520, 2017, doi: 10.1109/TMECH.2016.2620987.
M. Zapciu, J. Y. K’nevez, R. Laheurte, and P. Darnis, “Dynamic Characterization and Predictive Maintenance Concept of Machine Tool Spindle,” Appl. Mech. Mater., vol. 62, no. February, pp. 147–154, Jun. 2011, doi: 10.4028/www.scientific.net/AMM.62.147.
E. Traini, G. Bruno, G. D’Antonio, and F. Lombardi, “Machine learning framework for predictive maintenance in milling,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 177–182, 2019, doi: 10.1016/j.ifacol.2019.11.172.
A. Tucker, Z. Wang, Y. Rotalinti, and P. Myles, “Generating high-fidelity synthetic patient data for assessing machine learning healthcare software,” npj Digit. Med., vol. 3, no. 147, 2020, doi: 10.1038/s41746-020-00353-9.
R. J. Chen, M. Y. Lu, T. Y. Chen, D. F. K. Williamson, and F. Mahmood, “Synthetic data in machine learning for medicine and healthcare,” Nature Biomedical Engineering, vol. 5, no. 6, pp. 493–497, 2021, doi: 10.1038/s41551-021-00751-8.
B. So, J. P. Boucher, and E. A. Valdez, “Synthetic dataset generation of driver telematics,” Risks, vol. 9, no. 4, pp. 1-19, 2021, doi: 10.3390/risks9040058.
D. Cardoso and L. Ferreira, “Application of predictive maintenance concepts using artificial intelligence tools,” Appl. Sci., vol. 11, no. 1, pp. 1–18, 2021, doi: 10.3390/app11010018.
J. Dalzochio, R. Kunst, E. ignation, et al., “Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges,” Comput. Ind., vol. 123, p. 103298, 2020, doi:10.1016/j.compind.2020.103298
S. Müller, A.C.; Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, California, United States, 2016.
T. Benkedjouh, K. Medjaher, N. Zerhouni, and S. Rechak, “Health assessment and life prediction of cutting tools based on support vector regression,” J. Intell. Manuf., vol. 26, no. 2, pp. 213–223 2015, doi: 10.1007/s10845-013-0774-6.
P. Krishnakumar, K. Rameshkumar, and K. I. Ramachandran, “Tool wear condition prediction using vibration signals in high speed machining (HSM) of Titanium (Ti-6Al-4V) alloy,” in Procedia Computer Science, 2015, vol. 50, doi: 10.1016/j.procs.2015.04.049.
DOI: http://dx.doi.org/10.17977/um016v6i22022p085
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Journal of Mechanical Engineering Science and Technology (JMEST)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats