Surface Quality of Fe, Ni and Cr added Hyper-eutectic Al-Si Automotive Alloys under Up-milling and Down-milling Operation

Akib Abdullah Khan, Mashiur Rahman Shoummo, Mohammad Salim Kaiser


Effect of the elements Fe, Ni, and Cr on the surface quality under machining of hyper-eutectic aluminium-based Al-Si automotive alloys has been carried out as the elements improve the properties of this alloy. Machining is done on a horizontal type milling machine using a high-speed steel slab milling cutter in dry condition. Only the cutting speed varies throughout the experiment, while the machining feed and depth of cut remain fixed. The experimental results show that the addition of these alloying elements increases the roughness and hardness specially due to formation of Fe-rich intermetallic . However, the needle-like  has been refined with the addition of Cr, as seen by the microstructure. The SEM fractography shows a huge cleavage of the brittle  phase, which initiates the crack propagation for Fe added alloys. The downward force causes compressive stress exerted in down-milling operation, so the results depict higher hardness and better surface finish.  Besides, shorter chips are formed in down-milling than up-milling process, which rather causes the brittleness of the alloys. When the cutting speed is raised, the surface quality deteriorates due to high temperature, while the hardness improves initially due to formation of precipitates then decreases due to coarsening of precipitates.


Chips, hardness, microstructure, roughness, surface

Full Text:



D. K. Dwivedi, “Sliding temperature and wear behaviour of cast Al-Si base alloy,” Mater. Sci. Technol., vol. 19, no. 8, pp. 1091–1096, 2003, doi: 10.1179/026708303225004657.

M. S. Kaiser, M. R. Basher, and A. S. W. Kurny, “Effect of scandium on microstructure and mechanical properties of cast Al-Si-Mg alloy,” J. Mater. Eng. Perform., vol. 21, no. 7, pp. 1504–1508, 2012, doi: 10.1007/s11665-011-0057-3.

C. Subramanian, “Effects of sliding speed on the unlubricated wear behaviour of Al-12.3wt.%Si alloy,” Wear, vol. 151, no. 1, pp. 97–100, 1991, doi: 10.1016/0043-1648(91)90349-Y.

K. A. J. Kumar, C. M. Ramesha, M. K. Srinath, and B. Navaneeth, “Fabrication and post processing techniques to enhance the strength of Al-Si alloy,” Mater. Today Proc., vol. 59, no. 1, pp. 483–488, 2022, doi: 10.1016/j.matpr.2021.11.470.

Z. Yang, X. He, B. Li, A. Atrens, X. Yang, and H. Cheng, “Influence of Si, Cu, B, and trace alloying elements on the conductivity of the Al-Si-Cu alloy,” Materials (Basel)., vol. 15, no. 2, p. 426, 2022, doi: 10.3390/ma15020426.

T. O. Mbuya, B. O. Odera, and S. P. Ng’ang’a, “Influence of iron on castability and properties of aluminium silicon alloys: literature review,” Int. J. Cast Met. Res., vol. 16, no. 5, pp. 451–465, 2003, doi: 10.1080/13640461.2003.11819622.

K. L. Sahoo and B. N. Pathak, “Solidification behaviour, microstructure and mechanical properties of high Fe-containing Al–Si–V alloys,” J. Mater. Process. Technol., vol. 209, no. 2, pp. 798–804, 2009, doi: 10.1016/j.jmatprotec.2008.02.043.

F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, and P. J. Uggowitzer, “The effect of Ni on the high-temperature strength of Al-Si cast alloys,” Mater. Sci. Forum, vol. 690, pp. 274–277, 2011, doi: 10.4028/

R. Gholizadeh and S. G. Shabestari, “Investigation of the effects of Ni, Fe, and Mn on the formation of complex intermetallic compounds in Al-Si-Cu-Mg-Ni alloys,” Metall. Mater. Trans. A, vol. 42, no. November, pp. 3447–3458, 2011, doi: 10.1007/s11661-011-0764-2.

S. A. I. Suhruth, T. Kaja, and P. R. Gangadasari, “Extending the tolerance of iron in cast Al-Si alloy,” JOM, vol. 73, no. 9, pp. 2652–2657, 2021, doi: 10.1007/s11837-021-04803-x.

A. K. Mukhopadhyay, “Microstructure and properties of high strength aluminium alloys for structural applications,” Trans. Indian Inst. Met., vol. 62, no. 2, pp. 113-122, 2009, doi: 10.1007/s12666-009-0015-z.

N. A. Belov, A. A. Aksenov, and D. G. Eskin, Iron in Aluminium Alloys, 1st ed. London: CRC Press, 2002.

Y. Yang, S. Y. Zhong, Z. Chen, M. Wang, N. Ma, and H. Wang, “Effect of Cr content and heat-treatment on the high temperature strength of eutectic Al-Si alloys,” J. Alloys Compd., vol. 647, pp. 63–69, 2015, doi: 10.1016/j.jallcom.2015.05.167.

M. C. Santos, A. R. Machado, W. F. Sales, M. A. S. Barrozo, and E. O. Ezugwu, “Machining of aluminum alloys: a review,” The International Journal of Advanced Manufacturing Technology, vol. 86, no. (9-12), pp. 3067-3080, 2016, doi: 10.1007/s00170-016-8431-9.

T. J. Skingle and R. W. Thompson, “Machining of aluminum alloys,” J. Appl. Metalwork., vol. 1, no. 2, pp. 76–78, 1980, doi: 10.1007/BF02833612.

A. W. Ronald and R. D. Cormier, Machining and Metalworking Handbook, 3rd ed. McGraw-Hill, 2006.

D. K. Dwivedi, A. Sharma, and T. V. Rajan, “Machining of LM13 and LM28 cast aluminium alloys: Part I,” J. Mater. Process. Technol., vol. 196, no. 1–3, 2008, doi: 10.1016/j.jmatprotec.2007.05.032.

P. Goel, Z. A. Khan, A. N. Siddiquee, S. Kamaruddin, and R. K. Gupta, “Influence of slab milling process parameters on surface integrity of HSLA: a multi-performance characteristics optimization,” Int. J. Adv. Manuf. Technol., vol. 61, no. 9–12, pp. 859–871, 2012, doi: 10.1007/s00170-011-3763-y.

P. A. B. Machado, J. M. do Vale Quaresma, A. Garcia, and C. A. dos Santos, “Investigation on machinability in turning of as-cast and T6 heat-treated Al-(3, 7, 12%) Si-0.6%Mg alloys,” J. Manuf. Process., vol. 75, pp. 514–526, 2022, doi: 10.1016/j.jmapro.2022.01.028.

M. S. Kaiser, “Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al–12Si–1Mg–1Cu Piston Alloy,” J. Inst. Eng. Ser. D, vol. 99, no. 1, pp. 109–114, 2018, doi: 10.1007/s40033-017-0140-5.

M. C. Shaw, “Metal Cutting Principles,” New York: Oxford University Press, 2005, p. 672.

S. G. Shabestari, “The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys,” Mater. Sci. Eng. A, vol. 383, no. 2, pp. 289–298, 2004, doi: 10.1016/j.msea.2004.06.022.

D. Ozyurek, M. Yıldırım, B. Yavuzer, I. Simsek, and T. Tuncay, “The effect of Ni addition on microstructure and mechanical properties of cast A356 alloy modified with Sr,” Met. Mater., vol. 59, no. 06, pp. 391–399, 2021, doi: 10.4149/km_2021_6_391.

G. Gustafsson, T. Thorvaldsson, and G. L. Dunlop, “The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys,” Metall. Trans. A, vol. 17, no. 1, pp. 45–52, 1986, doi: 10.1007/BF02644441.

S. Gangopadhyay, R. Acharya, A. K. Chattopadhyay, and V. G. Sargade, “Effect of cutting speed and surface chemistry of cutting tools on the formation of bul or bue and surface quality of the generated surface in dry turning of AA6005 aluminium alloy,” Mach. Sci. Technol., vol. 14, no. 2, pp. 208–223, 2010, doi: 10.1080/10910344.2010.500961.

O. Özbek and H. Saruhan, “The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 2762–2772, 2020, doi: 10.1016/j.jmrt.2020.01.010.

W. Bai, A. Roy, R. Sun, and V. V. Silberschmidt, “Enhanced machinability of SiC-reinforced metal-matrix composite with hybrid turning,” J. Mater. Process. Technol., vol. 268, no. August 2018, pp. 149–161, 2019, doi: 10.1016/j.jmatprotec.2019.01.017.

M. S. Kaiser, S. H. Sabbir, M. S. Kabir, M. R. Soummo, and M. Al Nur, “Study of mechanical and wear behaviour of hyper-eutectic Al-Si automotive alloy through Fe, Ni and Cr addition,” Mater. Res., vol. 21, no. 4, 2018, doi: 10.1590/1980-5373-mr-2017-1096.

S. Ji, W. Yang, F. Gao, D. Watson, and Z. Fan, “Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si die cast alloys,” Mater. Sci. Eng. A, vol. 564, pp. 130–139, 2013, doi: 10.1016/j.msea.2012.11.095.

R. Mittal and D. Singh, “Effect of cold rolling on the mechanical properties of spray cast Al-6Si-20Pb alloy,” Adv. Mater. Res., vol. 585, pp. 402–406, 2012, doi: 10.4028/

N. V Dhandapani, V. S. Thangarasu, and G. Sureshkannan, “Investigation on effect of material hardness in high speed CNC end milling process,” Sci. World J., vol. 2015, pp. 1–6, 2015, doi: 10.1155/2015/762604.

M. S. Kaiser, M. R. Qadir, and S. Dutta, “Electrochemical corrosion performance of commercially used aluminium engine block and piston in 0.1M NaCl,” J. Mech. Eng., vol. 45, no. 1, pp. 48–52, 2015, doi: 10.3329/jme.v45i1.24384.

M. Mahta, M. Emamy, A. Daman, A. Keyvani, and J. Campbell, “Precipitation of Fe rich intermetallics in Cr- and Co-modified A413 alloy,” Int. J. Cast Met. Res., vol. 18, no. 2, pp. 73–79, 2005, doi: 10.1179/136404605225022928.



  • There are currently no refbacks.

Copyright (c) 2022 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats