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 Abstract 

Amplitude Versus Offset (AVO) inversion has been applied for reservoir analysis focused 

on the horizon carbonate Peutu and Belumai. Simultaneous inversion analysis is used to 

determine gas anomaly inside carbonate-rocks and it’s spread laterally around target 

zones. It is based on the fact that small Vp and Vs value changes are going to show the 

better anomaly to identify reservoir fluid content. The AVO inversion method applies 

angle gather data as the input and then it is inverted to produce P impedance (Zp) and S 

impedance (Zs). Zp and Zs are derived to produce Lambda-Rho and Mu-Rho that are 

sensitive to fluid and lithology. Value of Mu-Rho between 44–65 Gpa gr/cc while value 

of Lambda-Rho smaller than 10 Gpa gr/cc (for carbonate-rock filled by fluid). This 

research found that Lambda-Rho is the best parameter to show the existence of 

hydrocarbon in the case of gas. While Mu-Rho is the best parameter to show the 

differences in lithology. 

Keywords: AVO inversion, fluid, lithology. 

 

1. Introduction 

Most of the producing sandstone reservoirs in Indonesia are developmental reservoirs left behind by the 

Dutch era [1]. The reservoir that is currently producing has decreased its annual production [2], [3]. 

However, this condition is contrary to the need for energy which is continuously increasing every year 

along with population growth [2], [4]. The exploration paradigm was looking for sandstone reservoirs 

as the leading oil and gas producer has begun to shift to carbonate reservoirs. The potential for carbonate 

reservoirs in Indonesia is relatively large because it contains more than 50% of hydrocarbon reserves 

[1], [2], [5]. Carbonate reservoirs have more diverse characteristics than sandstone reservoirs, so a more 

complex approach is needed [6], [7]. 

The complexity and diversity of field conditions are some of the things that require special 

attention and does not just use simple data processing. However, further processing (inversion method) 

is needed, aiming to obtain a variety of essential information regarding hydrocarbon reserves. One of 

the AVO inversion method tools is the Lambda-Mu-Rho (LMR) introduced by Goodway et al. in 1997 

[8]. In some cases, the inversion method using Lambda and Mu parameters and multiplying both Rho 

parameters has been proven to be accurate in detecting sandstone lithology and fluid content [9]–[12]. 

The results of previous studies show a better picture of the presence of anomalies compared to 

interpretation using conventional inversion methods such as Acoustic Impedance (AI) inversion method 

[13]–[15]. By observing the response character in the gas zone, the AVO Lambda-Rho and Mu-Rho 

inversion method can limit the gas zone compared to the P impedance and S impedance parameters 

(Figure 1). The LMR parameter describes Mu-Rho (µρ) which relates to rigidity, and Lambda-Rho (λρ) 

which relates to incompressibility. Based on the derivation of the AVO equation, the Mu-Rho equation 

is expressed as 
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Figure 1. (a) Log P impedance and S impedance response characters, (b) Log Lambda-Rho and Mu-Rho characters. 

 

and the Lambda-Rho equation is expressed as 
 

22 2 sp ZZ   (2) 
 

which Zp as P impedance and Zs as S impedance [10], [11]. 

The LMR inversion method was applied to the North Sumatra basin, a back-arc basin bounded 

by the Bukit Barisan Mountains to the west, the Andaman Sea to the north, and the Malacca platform 

to the east. The North Sumatra Basin is a combination of pull-apart basin and half-graben basin systems 

formed since the late Eocene era when the Australian Ocean plate collided with the Eurasian continental 

plate. The Peutu and Notai Formations were thought to be important gas reservoirs in the North Sumatra 

basin. The Peutu Formation consists of clay and siltstone with moderate to very high carbonate content 

(in some places also contains the mineral glauconite). Limestone layers containing foraminifera and 

glauconite were formed at elevations throughout the exposure. Meanwhile, the Unai Formation, which 

consists of carbonate rock, sandstone and clay-limestone, is formed in the lower area. The Peutu 

Formation thickness varies from 35 to 50 meters at exposure to 200 to 1,100 meters in reef areas. 

2. Method 

The study was conducted to identify the gas present in the study area and distinguish the lithology type 

using the AVO LMR method. The steps taken in this study include several stages of implementation, 

starting with data preparation (well log data, seismic data, and other supporting information), well data 

analysis, seismic data processing by carrying out an inversion process to obtain acoustic impedance 

values, which are then transformed by the Mu-Rho and Lambda-Rho parameters. 

 

2.1. Data Collection 

This research's initial stage is to collect and prepare data and information on the research area needed 

for the research process. The data prepared are 3D pre-stack data (in the form of gather as the initial 

seismic data with 2 ms sample sampling method, zero phase, and Y segment format), gamma-ray log 

data (as well-data, velocity log, and density log to calculate the acoustic impedance of the well), and 

geological data of the research area (including stratigraphic data, regional geology, and structural 

geology of the research area which are used as references in the study) [7], [16]. 

 

2.2. Data Processing 

Data processing in this study using the Hampson Russell V7 software. The Hampson Russell software 

comes with geoview, E-log, AVO, and strata features. Geoview serves as a database for storing log data 

that can be used in other Hampson Russell features. E-log is used for editing and analyzing log data. 
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AVO is used for attribute creation and AVO analysis. In contrast, strata are used to create impedance 

models and perform seismic data inversion [17], [18]. 

Well-data processing is carried out to reduce the P (Vp) and S (Vs) wave velocity data so that the 

Log λρ and µρ data are obtained. Crossplot is carried out on existing log data to see the parameters that 

best describe the target area's fluid and lithology. Seismic data is in the form of Common Deep Point 

(CDP) gather Pre Stack Time Migration (PSTM) with a sampling rate of 2 ms. The angle gather process 

is carried out on seismic data to carry each trace in the offset area to the angle area. This process is 

carried out by ray tracing using the speed function. Then super gather is carried out for trace smoothing, 

which aims to strengthen the amplitude response. The stacking process on seismic PSTM gathers data 

by adding seismic traces in one CDP after Normal Move Out (NMO) correction [17], [19], [20]. The 

CDP stack data obtained were then correlated with well seismic tie data. After the correlation process, 

the target horizon is determined by picking the areas suspected of formations with hydrocarbon content. 

Compilation of P impedance and S impedance models from seismic data associated with well and 

horizon data as lateral boundaries. The initial model is needed for all inversion methods as a hard 

constraint on the final inversion result or limiting it so that the inversion result does not shift away from 

the model. 

The seismic data inversion process in this study was carried out using a model-based method 

with soft constraints. Inversion is carried out by inverting time windows starting from the top of the 

Talangakar to the top of the basement on both reflectivities, namely the P wave and the S wave. The 

inversion process aims to obtain the P wave impedance section (Zp) and the impedance section of the S 

wave (Zs). Zp and Zs volumes were transformed into Lambda-Rho, Mu-Rho, and Lambda per Mu using 

the Goodway equation [8]. 

3. Results and Discussion 

3.1. Crossplot Analysis 

The depth section of the cross-plot results will be shown in the cross-section. This sensitivity analysis 

is essential to determine the parameters that can be used as indicators of lithology and fluid indicators. 

The cross-plot analysis of Lambda-Rho and Mu-Rho parameters can also correctly display the target 

area's gas fluid content. The cross-plot study results of gas anomalies are represented by a water 

saturation content of less than 0.6472 Sw, which is shown by yellow to green as shown in Figure 2a. 

The anomaly on the cross-plot is shown by the yellow ellipse circle in Figure 2b. A smaller water 

saturation value characterizes a suitable reservoir [21]–[24]. 

 

  
(a) (b) 

 

Figure 2. (a) Cross-plot between log Lambda-Rho and Mu-Rho (water saturation color scale), (b) Cross section of vertical 

lithology distribution. 
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3.2. Analysis of Inversion Results 

In the study area, the Belumai and Peutu formations have many fault structures and faults. When viewed 

from one side of the petroleum system, hydrocarbon traps are thought to be structural traps, namely 

traps formed due to the deformation effect of reservoir rocks such as faults. The layers of porous and 

permeable rocks, such as carbonates in the Peutu formation, are ridden by impermeable rocks. It acted 

as caprock, as indicated by the unconformity boundary between the reservoir and the rocks above it. In 

this case, the rocks that act as stamp rock are shale and Belumai formations which are composed of 

carbonate shale, sandstone, and clay-limestone. 

The cross-section of the P wave impedance (Figure 3) and the S wave impedance (Figure 4) 

clearly shows that the lithology in the Peutu formation is carbonate covered by shale and the Belumai 

formation, which consists of carbonate shales, sandstone, and limestone clay. The carbonate bounded 

by the Peutu horizon and Tampur horizon are indicated by a low P impedance value (reddish yellow 

colour) with a P impedance value range of fewer than 32,500 ft/s*gr/cc and a high S impedance value 

(purple colour) with a range of impedance values S less than 25,000 ft/s*gr/cc. 

The cross-sections of the inversion result (P impedance and S impedance) can separate 

lithological variations vertically or laterally but have not been able to identify the presence of gaseous 

fluid. Therefore, a transformation is carried out to get the Lambda-Mu-Rho parameter value. 

 

 
 

Figure 3. Cross section of the P wave acoustic impedance. 

 

 
 

Figure 4. Cross section of the S wave acoustic impedance. 
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Figure 5. Target horizon anomalies at the Lambda-Rho cross-section. 

 

 
 

Figure 6. Target horizon anomalies at the Mu-Rho cross-section. 

 

3.3. Cross-sectional Analysis of Lambda-Rho and Mu-Rho 

The Lambda-Rho parameter is sensitive in classifying a fluid's presence and can show the presence of 

gas in the inversion cross-section. Meanwhile, the Mu-Rho parameter is an elasticity parameter that is 

sensitive to changes in lithology. Based on Figure 5, the anomaly area or prospect zone has a lower 

Lambda-Rho value (shown in yellow) than shale as the cover rock (shown in green-blue). This means 

that the site is a reservoir of carbonate rock that contains gas fluid. The Lambda-Rho value is relatively 

lower than 10 Gpa gr/cc. Meanwhile, the zones with higher Lambda-Rho values were identified as wet 

zones. The analysis results on the target zone can be interpreted as an accumulation of gaseous carbonate 

rocks at the height of the structure (fault). Meanwhile, Figure 6 shows the Mu-Rho value in the target 

site near the well has a range between 44–65 Gpa gr/cc. 

4. Conclusion 

Based on the available data, the results of the AVO LMR analysis process and the inversion process 

and elastic parameter estimation for fluid and lithology identification, conclude that Lambda-Rho can 

identify fluids where the carbonate filled with liquid will have a Lambda-Rho value lower than the 

carbonate that did not fill with fluid. Mu-Rho is very sensitive to lithology changes of carbonate rocks 

that have a higher value than the shale value. The combination of Lambda-Rho and Mu-Rho can identify 

hydrocarbon prospect areas, namely areas with high Mu-Rho and low Lambda-Rho values. 



JPSE (Journal of Physical Science and Engineering), Vol. 6, No. 1, 2021, Page 19–25  
 

24 

 

References 

[1] T. Tsuji et al., “Reservoir characterization for site selection in the Gundih CCS project, 

Indonesia,” Energy Procedia, vol. 63, pp. 6335–6343, 2014. 

[2] N. A. Pambudi, “Geothermal power generation in Indonesia, a country within the ring of fire: 

Current status, future development and policy,” Renewable and Sustainable Energy Rev., vol. 

81, pp. 2893–2901, 2018. 

[3] S. M. Bina, S. Jalilinasrabady, H. Fujii, and N. A. Pambudi “Classification of geothermal 

resources in Indonesia by applying exergy concept,” Renewable and Sustainable Energy Rev., 

vol. 93, pp. 499–506, 2018. 

[4] A. Hidayatno, A. R. Destyanto, and C. A. Hulu, “Industry 4.0 technology implementation impact 

to industrial sustainable energy in Indonesia: A model conceptualization,” Energy Procedia, vol. 

156, pp. 227–233, 2019. 

[5] R. Atmadibrata, D. Muslim, R. F. Hirnawan, and A. Abdurrokhim, “Characteristics of Arun 

carbonate reservoir and its implication to optimize the most potential gas resource zone in Arun 

gas field, Aceh, Indonesia,” Indones. J. Geosci., vol. 6, no. 2, pp. 209–222, 2019. 

[6] H. H. Al-Attar, M. Y. Mahmoud, A. Y. Zekri, R. Almehaideb, and M. Ghannam, “Low-salinity 

flooding in a selected carbonate reservoir: Experimental approach,” J. Pet. Explor. Prod. 

Technol., vol. 3, no. 2, pp. 139–149, 2013. 

[7] M. A. Sebtosheikh and A. Salehi, “Lithology prediction by support vector classifiers using 

inverted seismic attributes data and petrophysical logs as a new approach and investigation of 

training data set size effect on its performance in a heterogeneous carbonate reservoir,” J. Pet. 

Sci. Eng., vol. 134, pp. 143–149, 2015. 

[8] B. Goodway et al., “Combined microseismic and 4D to calibrate and confirm surface 3D 

azimuthal AVO/LMR predictions of completions performance and well production in the Horn 

River gas shales of NEBC,” The Leading Edge, vol. 31, no. 12, pp. 1502–1511, 2012. 

[9] W. J. Yoon and M. Farfour, “Spectral decomposition aids AVO analysis in reservoir 

characterization: A case study of Blackfoot field, Alberta, Canada,” Comp. Geosci., vol. 46, pp. 

60–65, 2012. 

[10] B. S. Ajanaku and O. J. Akintorinwa, “Determination of gas reservoir (s) using AVO inversion 

within “XY” field offshore Niger Delta,” Pet. Res., vol. 4, no. 1, pp. 52–58, 2019. 

[11] S. A. Negm, M. H. Khalil, and A. Bakr, “Gas prediction through the LMR method using post-

stack inversion and multi-attributes, F3 cube, North Sea, Netherlands,” Arabian J. Geosci., vol. 

13, no. 14, pp. 1–12, 2020. 

[12] H. Budiman, M. Y. N. Khakim, and A. K. Affandi, “Analysis of AVO and seismic inversion for 

reservoir characterization (case study: EP field, South Sumatera Basin),” J. Eng. Sci. Res., vol. 

2, no. 1, pp. 5–9, 2020. 

[13] P. Khalid and S. Ghazi, “Discrimination of fizz water and gas reservoir by AVO analysis: A 

modified approach,” Acta Geodaetica et Geophysica, vol. 48, no. 3, pp. 347–361, 2013. 

[14] A. Gisolf, “Parameterisation for reservoir oriented AVO inversion,” in 78th EAGE Conf. Exhibit. 

2016, pp. 1–5, 2016. 

[15] L. P. de-Figueiredo et al., “Bayesian seismic inversion based on rock-physics prior modeling for 

the joint estimation of acoustic impedance, porosity and lithofacies,” J. Comp. Phys., vol. 336, 

pp. 128–142, 2017. 

[16] S. Bhattacharya, T. R. Carr, and M. Pal, “Comparison of supervised and unsupervised approaches 

for mudstone lithofacies classification: Case studies from the Bakken and Mahantango-Marcellus 

Shale, USA,” J. Natural Gas Sci. Eng., vol. 33, pp. 1119–1133, 2016. 

[17] C. Sayers, L. den-Boer, S. Dasgupta, and B. Goodway, “Anisotropy estimate for the Horn River 

Basin from sonic logs in vertical and deviated wells,” The Leading Edge, vol. 34, no. 3, pp. 296–

306, 2015. 

[18] T. Azeem et al., “An application of seismic attributes analysis for mapping of gas bearing sand 

zones in the sawan gas field, Pakistan,” Acta Geodaetica et Geophysica, vol. 51, no. 4, pp. 723–

744, 2016. 

[19] N. Ahmed, P. Khalid, S. Ghazi, and A. W. Anwar, “AVO forward modeling and attributes 

analysis for fluid’s identification: a case study,” Acta Geodaetica et Geophysica, vol. 50, no. 4, 

pp. 377–390, 2015. 



D Setyawan, Hydrocarbon Mapping on Reservoir … 
 

25 

 

[20] P. Khalid, N. Ahmed, A. Mahmood, and M. A. Saleem, “An integrated seismic interpretation and 

rock physics attribute analysis for pore fluid discrimination,” Arabian J. Sci. Eng., vol. 41, no. 1, 

pp. 191–200, 2016. 

[21] A. Garg and D. J. Verschuur, “From surface seismic data to reservoir elastic parameters using a 

full-wavefield redatuming approach,” Geophys. J. Int., vol. 221, no. 1, pp. 115–128, 2020. 

[22] S. Bhattacharya and S. Mishra, “Applications of machine learning for facies and fracture 

prediction using Bayesian Network Theory and Random Forest: Case studies from the 

Appalachian basin, USA,” J. Pet. Sci. Eng., vol. 170, pp. 1005–1017, 2018. 

[23] L. P. de-Figueiredo et al., “Joint Bayesian inversion based on rock-physics prior modeling for 

the estimation of spatially correlated reservoir properties,” Geophys., vol. 83, no. 5, pp. M49–

M61, 2018. 

[24] M. Aleardi, “Analysis of different statistical models in probabilistic joint estimation of porosity 

and litho-fluid facies from acoustic impedance values,” Geosciences, vol. 8, no. 11, p. 388, 2018. 


