Design A Battery Charger with Arduino Uno-Based for A Wind Energy Power Plant

Anggara Trisna Nugraha, Dadang Priyambodo, Sryang Tera Sarena

Abstract


In 2019, fossil energy produced more than 88% of Indonesia's electrical energy. For this reason, innovation in supplying electrical energy via renewable energy is required. One of them is wind energy with a potential of 60.6 GW, which has only been utilized at 0.15 GW or only 0.25% of the existing potential. One of the essential components in this power plant is the battery. The process of charging the battery that is not suitable can cause a decrease in battery performance. Therefore, a battery charger is built that uses a buck converter to lower the voltage while employing PI control to regulate the output voltage. From system testing, it is found that the output voltage of the charge controller is stable, where the most significant error value from the output voltage value is 0.972%. The average output current from the buck converter test using the PI approach is 16.84 mA, while the average input current is 15.73 mA. As a result, this charge controller can improve the battery charger's charging efficiency and hence lengthen the battery's lifetime.

DOI: 10.17977/um024v7i12022p023


Keywords


wind; turbine; battery; Arduino Uno

Full Text:

PDF

References


Dutta, N. Barua, and A. Saha, “Design of an arduino based maximum power point tracking (MPPT) solar charge controller,” Dr. dissertation, Depart. Electr. Electron. Eng., Dhaka, BRAC University, 2016.

T. L. Floyd, Electronic Devices (Electron Flow Version). New Jersey, U.S.A: Prentice Hall, 2012.

A. R. Gautam, D. M. Deshpande, A. Suresh, and A. Mittal, “A double input DC to DC buck-boost converter for low voltage photovoltaic/wind systems,” Int. J. ChemTech Res., vol. 5, no. 2, pp. 1016–1023, 2013.

N. H. Baharudin, T. M. N. T. Mansur, F. A. Hamid, and M. I. Misrun, “Topologies of DC-DC converter in solar PV applications,” Indones. J. Electr. Eng. Comput. Sci., vol. 8, no. 2, pp. 368–374, 2017, doi: 10.11591/ijeecs.v8.i2.pp368-374.

R. R. Gopi and S. Sreejith, “Converter topologies in photovoltaic applications–A review,” Renew. Sust. Energ. Rev., vol. 94, pp. 1–14, 2018, doi: 10.1016/j.rser.2018.05.047.

M. Zagirnyak, V. Melnykov, and A. Kalinov, “The review of methods and systems of fault-tolerant control of variable-frequency electric drives,” Przeglad Elektrotechniczny, vol. 95, no. 1, pp. 141–144, 2019, doi: 10.15199/48.2019.01.36.

V. Chenchevoi et al., “Development of mathematical models of energy conversion processes in an induction motor supplied from an autonomous induction generator with parametric non-symmetry,” EasternEuropean J. Enterp. Technol., vol. 4, no. 8, pp. 67–82, 2021, doi: 10.15587/1729-4061.2021.239146.

M. K. Kazimierczuk, Pulse-Width Modulated DC–DC Power Converter. Ohio, U.S.A: John Wiley & Sons, 2015.

A. T. Nugraha and D. Priyambodo, “Design of pond water turbidity monitoring system in arduino-based catfish cultivation to support sustainable development goals 2030 no. 9 industry, innovation, and infrastructure,” J. Electron., Electromed. Eng., Med. Inform., vol. 2, no. 3, pp. 119–124, 2020, doi: 10.35882/jeeemi.v2i3.6.

A. T. Nugraha and D. Priyambodo, “Design of a monitoring system for hydroganics based on arduino uno R3 to realize sustainable development goals number 2 zero hunger,” J. Electron., Electromed. Eng., Med. Inform., vol. 3, no. 1, pp. 50–56, 2021, doi: 10.35882/jeeemi.v3i1.8.

M. A. Kabir and I. Husain, “Design of mutually coupled switched reluctance motors (MCSRMs) for extended speed applications using 3-phase standard inverters,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 436–445, 2015, doi: 10.1109/TEC.2015.2499086.

E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: A comparative study,” IEEE Trans. Transp. Electrification, vol. 3, no. 1, pp. 58–75, 2017, doi: 10.1109/TTE.2017.2649883.

M. Cheng and Y. Zhu, “The state of the art of wind energy conversion systems and technologies: A review,” Energy Convers. Manag., vol. 88, pp. 332–347, 2014, doi: 10.1016/j.enconman.2014.08.037.

A. T. Nugraha and D. Priyambodo, “Prototype hybrid power plant of solar panel and vertical wind turbine as a provider of alternative electrical energy at Kenjeran beach Surabaya,” J. Electron., Electromed. Eng., Med. Inform., vol. 2, no. 3, pp. 108–113, 2020, doi: 10.35882/jeeemi.v2i3.4.

D. Priyambodo and A. T. Nugraha, “Design and build a photovoltaic and vertical savonious turbine power plant as an alternative power supply to help save energy in skyscrapers,” J. Electron., Electromed. Eng., Med. Inform., vol. 3, no. 1, pp. 57–63, 2021, doi: 10.35882/jeeemi.v3i1.9.

S. Qazi, Standalone Photovoltaik (PV) Systems for Disaster Relief and Remote Areas. New York, U.S.A.: Elsevier, 2017.

A. R. Kadafi, “Implementasi sistem temu kembali informasi pada dokumen mutu,” J. ELTIKOM: J. Tek. Elektr., Teknol. Inf. Komput., vol. 2, no. 1, pp. 18–25, 2018, doi: 10.31961/eltikom.v2i1.38.

A. T. N. Angga, M. J. Shiddiq, and M. F. Ramadhan, “Use ordinary expressions to learn how to extract code feedback from the software program upkeep process,” Int. J. Adv. Data Inf. Sys., vol. 2, no. 2, pp. 105–113, 2021, doi: 10.25008/ijadis.v2i2.1219.

V. Reddy, P. S. Varma, and A. Govardhan, “Action model prediction and analysis for CBMR application,” in 2018 Second Int. Conf. Comput. Method. Commun. (ICCMC), Erode, India, 15–16 Feb. 2018, pp. 1015–1020, doi: 10.1109/ICCMC.2018.8487504.

E. Noei and A. Heydarnoori, “EXAF: A search engine for sample applications of object-oriented framework-provided concepts,” Inf. Softw. Technol., vol. 75, pp. 135–147, 2016, doi: 10.1016/j.infsof.2016.03.007.

C. C. Silva, M. Galster, and F. Gilson, “Topic modeling in software engineering research,” Empir. Softw. Eng., vol. 26, no. 6, pp. 1–62, 2021, doi: 10.1007/s10664-021-10026-0.

A. R. Santos, I. C. Machado, E. S. de Almeida, J. Siegmund, and S. Apel, “Comparing the influence of using feature-oriented programming and conditional compilation on comprehending feature-oriented software,” Empir. Softw. Eng., vol. 24, no. 3, pp. 1226–1258, 2019, doi: 10.1007/s10664-018-9658-x.

N. Gupta, V. Yadav, and M. Singh, “Automated regression test case generation for web application: A survey,” ACM Comput. Surveys (CSUR), vol. 51, no. 4, pp. 1–25, 2018, doi: 10.1145/3232520.

E. E. Ogheneovo, “On the relationship between software complexity and maintenance costs,” J. Comput. Commun., vol. 2, no. 14, p1, 2014, doi: 10.4236/jcc.2014.214001.

O. Browne, P. O'Reilly, M. Hutchinson, and N. B. Krdzavac, “Distributed data and ontologies: An integrated semantic web architecture enabling more efficient data management,” J. Assoc. Inf. Sci. Technol., vol. 70, no. 6, pp. 575–586, 2019, doi: 10.1002/asi.24144.

S. K. Narayanasamy, K. Srinivasan, Y. C. Hu, S. K. Masilamani, and K. Y. Huang, “A contemporary review on utilizing semantic web technologies in healthcare, virtual communities, and ontology-based information processing systems,” Electronics, vol. 11, no. 3, p. 453, 2022, doi: 10.3390/electronics11030453.

X. Sun, X. Liu, Y. Duan, and B. Li, “Using hierarchical latent dirichlet allocation to construct feature tree for program comprehension,” Sci. Program., vol. 2017, p. 4382348, 2017, doi: 10.1155/2017/4382348.

M. Landhäußer, S. J. Körner, and W. F. Tichy, “From requirements to UML models and back: How automatic processing of text can support requirements engineering,” Softw. Qual. J., vol. 22, no. 1, pp. 121–149, 2014, doi: 10.1007/s11219-013-9210-6.




Copyright (c) 2022 Anggara Trisna Nugraha, Dadang Priyambodo, Sryang Tera Sarena

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License