Green Synthesis AgNPs Immobilized to Whatman Paper Using Chromolaena odorata Extract and Its Application as Photocatalyst

Kiki Firanita, Syamsul Hidayat, Fadhli Dzil Ikram, Syamsul Bahtiar, Emsal Yanuar


Synthesis and immobilization of silver nanoparticles (AgNPs) to Whatman paper carried out using Cromolaena odorata extract irradiated by sunlight. The UV-Vis shows silver nanoparticles successfully formed from AgNO3 1 mM, 2 mM, and 3 mM with the absorption peaks at 455 nm, 452 nm, and 451 nm, respectively. The SEM shows AgNPs are spherical with an average particle size are 60.45 nm, 63.19 nm, and 68.42 nm, respectively. The EDX spectrum shows the composition of silver immobilized to Whatman paper increase with increasing concentration of 10.14Wt%, 64.48Wt%, and 70.48 Wt%, respectively. AgNPs/Whatman paper has a cubic crystal structure, space group Fm-3m, lattice parameter (a) 4.0862 Ǻ and crystal size of 42.94 nm. FTIR reach peaks at 520.78 cm-1 and 1,059 cm-1 explains the vibration of the Ag-O bonds indicated the formation of AgNPs. Furthermore, the photocatalyst ability for dye degradation was evaluated using methylene blue 10 ppm under sunlight for 6 hours. The result shows a changed colour to fade and decreases the absorbance ability of methylene blue. Therefore, it can be concluded that green synthesis and immobilization of AgNPs/Whatman paper have a potential to be applied as photocatalyst materials for dye degradation.

DOI: 10.17977/um024v7i12022p006


Green synthesis; Immobilization; AgNPs; Photocatalyst

Full Text:



G. A. D. Lestari, I. E. Suprihatin, and J. Sibarani, “Efektivitas nanopartikel perak (NPAg) untuk fotodegradasi zat warna indigosol blue,” Cakra Kim. (Indonesian E-Journal Appl. Chem., vol. 8, no. 1, pp. 34–40, 2020.

T. A. Dankovich, “Microwave-assisted incorporation of silver nanoparticles in paper for point- of-use water purification,” Environ. Sci. Nano, vol. 1, no. 4, pp. 367–378, 2014, doi: 10.1039/C4EN00067F.

L. Dai, R. Liu, L. Q. Hu, and C. L. Si, “Simple and green fabrication of AgCl/Ag-cellulose paper with antibacterial and photocatalytic activity,” Carbohydr. Polym., vol. 174, pp. 450– 455, 2017, doi: 10.1016/j.carbpol.2017.06.107.

M. Mourya, D. Choudhary, A. K. Basak, C. S. P. Tripathi, and D. Guin, “Ag-nanoparticles-embedded filter paper: An efficient dip catalyst for aromatic nitrophenol reduction, intramolecular cascade reaction, and methyl orange degradation,” ChemistrySelect, vol. 3, no. 10, pp. 2882–2887, 2018, doi: 10.1002/slct.201702609.

M. S. Islam et al., “Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper,” ACS Sustain. Chem. Eng., vol. 6, no. 7, pp. 9178–9188, 2018, doi: 10.1021/acssuschemeng.8b01523.

B. Swensson, M. Ek, and D. G. Gray, “In situ preparation of silver nanoparticles in paper by reduction with alkaline glucose solutions,” ACS Omega, vol. 3, no. 8, pp. 9449–9452, 2018, doi: 10.1021/acsomega.8b01199.

T. T. Tsai et al., “Antibacterial cellulose paper made with silver-coated gold nanoparticles,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017, doi: 10.1038/s41598-017-03357-w.

M. A. Kareem et al., “Green synthesis of silver nanoparticles (AgNPs) for optical and photocatalytic applications: A review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 805, no. 1, p. 012020, 2020, doi: 10.1088/1757- 899X/805/1/012020.

M. Goswami, D. Baruah, and A. M. Das, “Green synthesis of silver nanoparticles supported on cellulose and their catalytic application in the scavenging of organic dyes,” New J. Chem., vol. 42, no. 13, pp. 10868–10878, 2018, doi: 10.1039/C8NJ00526E.

J. Saha, A. Begum, A. Mukherjee, and S. Kumar, “A novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye,” Sustain. Environ. Res., vol. 27, no. 5, pp. 245–250, 2017, doi: 10.1016/j.serj.2017.04.003.

M. L. Bere, J. Sibarani, and M. Manurung, “Sintesis nanopartikel perak (NPAg) menggunakan ekstrak air daun kemangi (Ocimum sanctum linn.) dan aplikasinya dalam fotodegradasi zat warna metilen biru,” Cakra Kim. (Indonesian E-Journal Appl. Chem., vol. 7, no. 2, pp. 155–164, 2019.

M. Chokkalingam et al., “Photocatalytic degradation of industrial dyes using Ag and Au nanoparticles synthesized from Angelica gigas ribbed stem extracts,” Optik, vol. 185, pp. 1213–1219, 2019, doi: 10.1016/j.ijleo.2019.04.065.

R. M. Kumari, N. Thapa, N. Gupta, A. Kumar, and S. Nimesh, “Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 7, no. 4, p. 045009, 2016, doi: 10.1088/2043-6262/7/4/045009.

K. Vijayaraghavan, J. Rajkumar, S. N. A. Bukhari, B. Al Sayed, and M. A. Seyed, “Chromolaena odorata: A neglected weed with a wide spectrum of pharmacological activities,” Mol. Med. Rep., vol. 15, no. 3, pp. 1007–1016, 2017, doi: 10.3892/mmr.2017.6133.

E. Yanuar et al., “Green synthesis of silver nanoparticles using Kirinyuh (Chromolaena odorata) leaf extract and their antibacterial activity against Vibrio sp.,” AIP Conf. Proc., vol. 2243, no. 1, p. 020031, 2020, doi: 10.1063/5.0001639.

A. Chahardoli, F. Qalekhani, Y. Shokoohinia, and A. Fattahi, “Biological and catalytic activities of green synthesized silver nanoparticles from the leaf infusion of Dracocephalum kotschyi boiss,” Glob. Challenges, vol. 5, no. 2, p. 2000018, 2020, doi: 10.1002/gch2.202000018.

K. Nahar, H. Rahaman, G. M. A. Khan, and K. Islam, “Green synthesis of silver nanoparticles from Citrus sinensis peel extract and its antibacterial potential,” Asian J. Green Chem., vol. 5, no. 1, pp. 135–150, 2021, doi: 10.22034/ajgc.2021.113966.

F. O. Okumu and M. C. Matoetoe, “Electrochemical and optical band gaps of bimetallic silver- platinum varying metal ratios nanoparticles,” African J. Pure Appl. Chem., vol. 11, no. 1, pp. 1–8, 2017, doi: 10.5897/AJPAC2016.0700.

S. Sarina, E. R. Waclawik, and H. Zhu, “Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation,” Green Chem., vol. 15, no. 7, pp. 1814–1833, 2013, doi: 10.1039/C3GC40450A.

M. Ghosh et al., “Enhanced photocatalytic and antibacterial activities of mechanosynthesized TiO 2 e Ag nanocomposite in wastewater treatment,” J. Mol. Struct., vol. 1211, p. 128076, 2020, doi: 10.1016/j.molstruc.2020.128076.

B. Das et al., “Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage,” Arab. J. Chem., vol. 10, no. 6, pp. 862–876, 2017, doi: 10.1016/j.arabjc.2015.08.008.

M. S. Aref and S. S. Salem, “Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture,” Biocatal. Agric. Biotechnol., vol. 27, p. 101689, 2020, doi: 10.1016/j.bcab.2020.101689.

A. M. Atta and H. M. Abomelka, “Multifunctional finishing of cotton fibers using silver nanoparticles via microwave-assisted reduction of silver alkylcarbamate,” Mater. Chem. Phys., vol. 260, p. 124137, 2021, doi: 10.1016/j.matchemphys.2020.124137.

Z. Kubasheva et al., “Synthesis and antibacterial activity of (AgCl, Ag) NPs/diatomite hybrid composite,” Materials, vol. 13, no. 15, p. 3409, 2020, doi: 10.3390/ma13153409.

M. Muzamil, N. Khalid, M. D. Aziz, and S. A. Abbas, “Synthesis of silver nanoparticles by silver salt reduction and its characterization,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 60, no. 1, p. 012034, 2014, doi: 10.1088/1757-899X/60/1/012034.

V. A. Kumar et al., “Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod),” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 7, no. 1, p. 015002, 2016, doi: 10.1088/2043- 6262/7/1/015002.

D. T. Nguyen et al., “Chromolaena odorata extract as a green agent for the synthesis of Ag@AgCl nanoparticles inactivating bacterial pathogens,” Chem. Pap., vol. 74, no. 6, pp. 1849–1857, 2020, doi: 10.1007/s11696-019-01033-z.

A. A. Alshehri and M. A. Malik, “Phytomediated photo-induced green synthesis of silver nanoparticles using Matricaria chamomilla L. and its catalytic activity against rhodamine B,” Biomolecules, vol. 10, no. 12, p. 1604, 2020, doi: 10.3390/biom10121604.

C. Parvathiraja, S. Shailajha, S. Shanavas, and J. Gurung, “Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation,” Appl. Nanosci., vol. 11, no. 2, pp. 477–491, 2021, doi: 10.1007/s13204-020-01585-7.

S. Bawazeer et al., “Green synthesis of silver nanoparticles using Tropaeolum majus: Phytochemical screening and antibacterial studies,” Green Process. Synth., vol. 10, no. 1, pp. 85–94, 2021, doi: 10.1515/gps-2021-0003.

K. Kayed, “The optical properties of individual silver nanoparticles in Ag/Ag2O composites synthesized by oxygen plasma treatment of silver thin films,” Plasmonics, vol. 15, no. 5, pp. 1439–1449, 2020, doi: 10.1007/s11468-020-01169-9.

T. B. Devi, S. Begum, and M. Ahmaruzzaman, “Photo-catalytic activity of plasmonic Ag@AgCl nanoparticles (synthesized via a green route) for the effective degradation of Victoria Blue B from aqueous phase,” J. Photochem. Photobiol. B, Biol., vol. 160, 260–270, 2016, doi: 10.1016/j.jphotobiol.2016.03.033.

Z. Ghasemi, V. Abdi, and I. Sourinejad, “Single‑step biosynthesis of Ag/AgCl@TiO2 plasmonic nanocomposite with enhanced visible light photoactivity through aqueous leaf extract of a mangrove tree,” Appl. Nanosci., vol. 10, no. 2, pp. 507–516, 2020, doi: 10.1007/s13204-019-01149-4.

Copyright (c) 2022 Kiki Firanita, Syamsul Hidayat, Fadhli Dzil Ikram, Syamsul Bahtiar, Emsal Yanuar

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License