Study of the Structure of MnxFe3-xO4-Poly(m-Aminobenzene Sulfonic Acid) Composites Based on Natural Sand

Andy Choerullah, Sunaryono Sunaryono, Arif Hidayat, Nik Ahmad Nizam Nik Malek


MnxFe3-xO4-Poly(m-ABS) nanocomposite has been successfully synthesized by in-situ polymerization. In the formation of MnxFe3-xO4-Poly(m-ABS) nanocomposites, FeCl synthesized from iron sand acts as an oxidant and m-aminobenzenesulfonic acid (m-ABS) as a monomer. Structural characterization has been successfully carried out using XRD, FTIR, and SEM. XRD test results show that the MnxFe3-xO4-Poly(m-ABS) nanocomposite has a particle size of about 10.62 nm. The appearance of peaks (111) and (620) with low intensity indicated the presence of poly(m-ABS). This low intensity was probably caused by the amorphous character of polyaniline and its derivatives. The FTIR results show the appearance of asymmetrical and symmetrical S=O strains, S-O, and C-S strains are the main characteristics of poly(m-ABS) which indicate the success of monomer polymerization. The results of the SEM test show that circular shapes dominate the particles with varying sizes with an average size of 42 nm. This result is different from the XRD results because SEM can only measure the surface of the particles, so the resulting size tends to be larger. Based on the study of the structure obtained shows that the MnxFe3-xO4-Poly(m-ABS) nanocomposite has the potential to be applied to energy conversion devices.

DOI: 10.17977/um024v7i12022p016


MnxFe3-xO4; poly(m-aminobenzenesulfonic acid); structure; nanoparticles

Full Text:



M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, and Z. Issaabadi, “applications of nanotechnology in daily life,” in An Introduction to Green Nanotechnology. London, U.K.: Elseiver, 2019, ch. 4, pp. 113–143.

T. Saragi et al., “Synthesis and properties of iron oxide particles prepared by hidrothermal method,” in IOP Conf. Ser.: Mat. Sci. Eng., vol. 196, no. 1, p. 012025, 2017, doi: 10.1088/1757-899X/196/1/012025.

S. Moise et al., “The cellular magnetic response and biocompatibility of biogenic zinc-and cobalt-doped magnetite nanoparticles,” Sci. Rep., vol. 7, no. 1, p. 39922, 2017, doi: 10.1038/srep39922.

I. P. T. Indrayana, “Review Fe3O4 dari pasir besi : Sintesis, karakterisasi, dan fungsionalisasi hingga aplikasinya dalam bidang nanoteknologi maju,” Uniera, vol. 8, no. 2, pp. 65–75, 2019.

A. Eftekhari, L. Li, and Y. Yang, “Polyaniline supercapacitors,” J. Power Sources, vol. 347, pp. 86–107, 2017, doi: 10.1016/j.jpowsour.2017.02.054.

X. Wang et al., “Bio template synthesis of Fe3O4/Polyaniline for supercapacitor,” J. Energy Storage, vol. 30, p. 101554, 2020, doi: 10.1016/j.est.2020.101554.

F. Sadegh, A. R. Modarresi-Alam, M. Noroozifar, and K. Kerman, “A facile and green synthesis of superparamagnetic Fe3O4@PANI nanocomposite with a core-shell structure to increase of triplet state population and efficiency of the solar cells,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 104942, 2021, doi: 10.1016/j.jece.2020.104942.

Sunaryono, N. M. Chusna, A. Taufiq, N. Mufti, and S. Hidayat, “The influence of alternating magnetic field frequency on magneto-thermal behavior of Mn0.25Fe2.75O4@PANI material,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 515, no. 1, p. 012035, 2019, doi: 10.1088/1757-899X/515/1/012035.

P. Bandyopadhyay et al., “Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application,” Chem. Eng. J., vol. 308, pp. 1174–1184, 2017, doi: 10.1016/j.cej.2016.10.015.

M. Das, S. S. Bhunia, and S. Roy, “Poly (m-amino benzene sulfonic acid)-based composites on plastic substrates: A simple and cost-effective approach towards low ppm ammonia detection at room temperature and kinetic analysis,” Synth. Met., vol. 248, pp. 1–13, 2019, doi: 10.1016/j.synthmet.2018.12.019.

A. R. Modarresi-Alam et al., “A solid-state synthesis, mechanism, and characterization of high molecular weight poly (3-aminobenzenesulfonic acid) with FeCl3.6H2O as a binary oxidant and dopant,” J. Polym. Res., vol. 26, no. 1, pp. 1–16, 2019, doi: 10.1007/s10965-018-1674-4.

S. Shabzendedar, A. R. Modarresi-Alam, M. Noroozifar, and K. Kerman, “Core-shell nanocomposite of superparamagnetic Fe3O4 nanoparticles with poly(m-aminobenzenesulfonic acid) for polymer solar cells,” Org. Electron., vol. 77, p. 105462, 2019, doi: 10.1016/j.orgel.2019.105462.

Sunaryono et al., “Magneto-thermal behavior of MnxFe3-xO4-PVA/PVP magnetic hydrogel and its potential application,” in AIP Conf. Proc., vol. 2228, no. 1, p. 030018, 2020, doi: 10.1063/5.0000890.

S. Sumardiono et al., “Physicochemical properties of sago ozone oxidation: The effect of reaction time, acidity, and concentration of starch,” Foods, vol. 10, no. 6, p. 1309, 2021, doi: 10.3390/foods10061309.

T. Miao, E. J. Miller, C. McKenzie, and R. A. Oldinski, “Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration,” J. Mat. Chem. B, vol. 3, no. 48, pp. 9242–9249, 2015, doi: 10.1039/C5TB00989H.

Y. Yan et al., “Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications,” Chem. Soc. Rev., vol. 44, no. 10, pp. 3295–3346, 2015, doi: 10.1039/C4CS00492B.

J. Gao et al., “Bifacial quasi-solid-state dye-sensitized solar cells with Poly (vinyl pyrrolidone)/polyaniline transparent counter electrode,” Nano Energy, vol. 26, pp. 123–130, 2016, doi: 10.1016/j.nanoen.2016.05.010.

J. Tang et al., “Synthesis and electromagnetic properties of PANI/PVP/CIP core-shell composites,” Mater. Sci. Eng.: B, vol. 186, pp. 26–32, 2014, doi: 10.1016/j.mseb.2014.02.003.

A. R. Modarresi-Alam et al., “The first report of polymerization and characterization of aniline bearing chiral alkyl group on ring via covalent bond; Poly[(±)-2-(sec-butyl)aniline],” J. Mol. Struct., vol. 1083, pp. 17–26, 2015, doi: 10.1016/j.molstruc.2014.11.003.

F. Movahedifar and A. R. Modarresi-Alam, “The effect of initiators and oxidants on the morphology of poly [(±)-2-(sec-butyl) aniline] a chiral bulky substituted polyaniline derivative,” Polym. Adv. Technol., vol. 27, no. 1, pp. 131–139, 2016, doi: 10.1002/pat.3614.

A. Farrokhzadeh and A. R. Modarresi-Alam, “Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline],” J. Solid State Chem., vol. 237, pp. 258–268, 2016, doi: 10.1016/j.jssc.2016.02.032.

H. B. Koosheh and A. R. Modarresi-Alam, “Solid-state synthesis of a new core-shell nanocomposite of polyaniline and silica via oxidation of aniline hydrochloride by FeCl3.6H2O,” Polym. Adv. Technol., vol. 27, no. 8, pp. 1038–1049, 2016, doi: 10.1002/pat.3766.

P. Bandyopadhyay et al., “Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application,” Chem. Eng. J., vol. 308, pp. 1174–1184, 2017, doi: 10.1016/j.cej.2016.10.015.

X. Zheng et al., “Self‐powered electrochemistry for the oxidation of organic molecules by a cross‐linked triboelectric nanogenerator,” Adv. Mat., vol. 28, no. 26, pp. 5188–5194, 2016, doi: 10.1002/adma.201600133.

S. I. Shoda, H. Uyama, J. I. Kadokawa, S. Kimura, and S. Kobayashi, “Enzymes as green catalysts for precision macromolecular synthesis,” Chem. Rev., vol. 116, no. 4, pp. 2307–2413, 2016, doi: 10.1021/acs.chemrev.5b00472.

A. S. Prasad, “Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea),” Mater. Sci. Semicond. Process., vol. 53, pp. 79–83, 2016, doi: 10.1016/j.mssp.2016.06.009.

A. A. Alqadami et al., “Synthesis and characterization of Fe3O4@TSC nanocomposite: Highly efficient removal of toxic metal ions from aqueous medium,” RSC Adv., vol. 6, no. 27, pp. 22679–22689, 2016, doi: 10.1039/C5RA27525C.

Sunaryono et al., “Contributions of TMAH surfactant on hierarchical structures of PVA/Fe3O4–TMAH ferrogels by using SAXS instrument,” J. Inorg. Organomet. Polym. Mater., vol. 28, no. 6, pp. 2206–2212, 2018, doi: 10.1007/s10904-018-0939-z.

G. Ćirić-Marjanović, “Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications,” Synt. Met., vol. 177, pp. 1–47, 2013, doi: 10.1016/j.synthmet.2013.06.004.

S. T. U. I. Subadra et al., “Preparation and characterization of magnetite nanoparticles combined with polyaniline and activated carbon,” in IOP Conf. Ser.: Earth Environ. Sci., vol. 276, no. 1, 2019, doi: 10.1088/1755-1315/276/1/012041.

A. Taufiq et al., “Preparation of superparamagnetic Zn0.5Mn0.5Fe2O4 particle by coprecipitation-sonochemical method for radar absorbing material,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 202, no. 1, p. 012024, 2017, doi: 10.1088/1757-899X/202/1/012024.

M. M. Ismail, S. N. Rafeeq, J. Sulaiman, and A. Mandal, “Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite,” Appl. Phys. A, vol. 124, no. 5, pp. 1–12, 2018, doi: 10.1007/s00339-018-1808-x.

S. Wahyuningsih, A. H. Ramelan, A. N. Firdaus, and R. E. Cahyono, “Preparation composite TiO2 anatase with polydimetilsiloxane and polytetrafluoroethylene for self cleaning on glass substrate,” in IOP Conf. Ser.: Mat. Sci. Eng., vol. 858, no. 1, p. 012020, 2020, doi: 10.1088/1757-899X/858/1/012020.

Y. Septriani and M. Muldarisnur, “Kontrol ukuran nanopartikel perak dengan variasi konsentrasi ekstrak kulit buah manggis,” J. Fis. Unand, vol. 11, no. 1, pp. 68–74, 2022, doi: 10.25077/jfu.11.1.68-74.2022.

A. Taufiq et al., “Exploring magnetic properties and antimicrobial activities of Co0.4Fe2.6O4ferrofluids using olive oil as dispersant agent,” in AIP Conf. Proc., vol. 2251, no. 1, p. 030002, 2020, doi: 10.1063/5.0015623.

Copyright (c) 2022 Andy Choerullah, Sunaryono, Arif Hidayat, Nik Ahmad Nizam Nik Malek

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License