Sintesis Kromium Ferit Dari Pasir Pantai dan Karakterisasi Awal Sensor Suhu

Widya Elyani, Arif Hidayat, Ahmad Taufiq, Sunaryono Sunaryono


Ferrofluids for temperature sensor application become one of the important modern technology applications. Therefore, the development of the beach sand-based ferrofluids for temperature sensor becomes new and essential things for cutting off their production. In this research, the preliminary investigation of the temperature sensor is developed based on the chromium ferrite ferrofluids. The sample in powder and fluid were prepared by coprecipitation-sonochemical technique.   The powder sample which was characterized by XRD has the crystallite size of 10 nm with high purity. The preliminary investigation shows that the chromium ferrite ferrofluid has a good property as a candidate for temperature sensor application showing a good response on the temperature treatment


chromium ferrite, ferrofluid, sand, temperature sensor

Full Text:



C. M. Jha et al., “High resolution microresonator-based digital temperature sensor,” Appl. Phys. Lett., vol. 91, no. 7, hal. 074101, 2007.

M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, dan P. Palffy-Muhoray, “Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor,” Appl. Phys. Lett., vol. 85, no. 14, hal. 2691–2693, 2004.

D. M. Henry, J. H. Herringer, dan N. Djeu, “Response of 1.6 μm Er: Y 3 Al 5 O 12 fiber-optic temperature sensor up to 1520 K,” Appl. Phys. Lett., vol. 74, no. 23, hal. 3447–3449, 1999.

L. Li, Q. Han, Y. Chen, T. Liu, dan R. Zhang, “An all-fiber optic current sensor based on ferrofluids and multimode interference,” IEEE Sens. J., vol. 14, no. 6, hal. 1749–1753, 2014.

D. Zhang, Z. Di, Y. Zou, dan X. Chen, “Temperature sensor using ferrofluid thin film,” Microfluid. Nanofluidics, vol. 7, no. 1, hal. 141–144, 2009.

J. A. Lopez, F. González, F. A. Bonilla, G. Zambrano, dan M. E. Gómez, “Synthesis and characterization of Fe3O4 magnetic nanofluid,” Rev. Latinoam. Metal. Mater., vol. 30, no. 1, hal. 60–66, 2010.

A. Taufiq, E. G. Rachman Putra, dan S. Pratapa, “Nano-structural studies on Fe3O4 particles dispersing in a magnetic fluid using X-ray diffractometry and small-angle neutron scattering,” in Materials Science Forum, 2015, vol. 827, hal. 213–218.

M. Abareshi, E. K. Goharshadi, S. M. Zebarjad, H. K. Fadafan, dan A. Youssefi, “Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids,” J. Magn. Magn. Mater., vol. 322, no. 24, hal. 3895–3901, 2010.

E. Petrova, D. Kotsikau, dan V. Pankov, “Structural characterization and magnetic properties of sol–gel derived ZnxFe3–xO4 nanoparticles,” J. Magn. Magn. Mater., vol. 378, hal. 429–435, 2015.

H. D. Nguyen, T. D. Nguyen, D. H. Nguyen, dan P. T. Nguyen, “Magnetic properties of Cr doped Fe3O4 porous nanoparticles prepared through a co-precipitation method using surfactant,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 5, no. 3, hal. 035017, 2014.

S. A. Kulkarni, P. S. Sawadh, dan K. K. Kokate, “Synthesis and Characterization of Fe3O4 Nanoparticles for Engineering Applications.”

H. El Ghandoor, H. M. Zidan, M. M. Khalil, dan M. I. M. Ismail, “Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles,” Int J Electrochem Sci, vol. 7, no. 6, hal. 5734–5745, 2012.

S. Bhukal, T. Namgyal, S. Mor, S. Bansal, dan S. Singhal, “Structural, electrical, optical and magnetic properties of chromium substituted Co–Zn nanoferrites Co 0.6 Zn 0.4 CrxFe 2− xO 4 (0⩽ x⩽ 1.0) prepared via sol–gel auto-combustion method,” J. Mol. Struct., vol. 1012, hal. 162–167, 2012.

O. A. Li et al., “Size dependent magnetic and magneto-optical properties of Ni 0.2 Zn 0.8 Fe 2 O 4 nanoparticles,” J. Magn. Magn. Mater., vol. 408, hal. 206–212, 2016.

Z. Rezay Marand, M. Helmi Rashid Farimani, dan N. Shahtahmasebi, “Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application,” Nanomedicine J., vol. 1, no. 4, hal. 238–247, 2014.

J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, dan M. R. Hosseini-Tabatabaei, “Sonochemical synthesis of Fe 3 O 4/ZnO magnetic nanocomposites and their application in photo-catalytic degradation of various organic dyes,” J. Mater. Sci. Mater. Electron., vol. 26, no. 12, hal. 9591–9599, 2015.

Y. Wang, I. Nkurikiyimfura, dan Z. Pan, “Sonochemical synthesis of magnetic nanoparticles,” Chem. Eng. Commun., vol. 202, no. 5, hal. 616–621, 2015.

S. Wu et al., “Fe 3 O 4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation,” Mater. Lett., vol. 65, no. 12, hal. 1882–1884, 2011.

W. Wu, Q. He, H. Chen, J. Tang, dan L. Nie, “Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles,” Nanotechnology, vol. 18, no. 14, hal. 145609, 2007.

W. Zhang, X. Zuo, D. Zhang, C. Wu, dan S. R. P. Silva, “Cr3+ substituted spinel ferrite nanoparticles with high coercivity,” Nanotechnology, vol. 27, no. 24, hal. 245707, 2016.


A. T. Sunaryono dan S. P. Mashuri, “M. Zainuri, Triwikantoro, and Darminto,” in Mater. Sci. Forum, 2015, vol. 827, hal. 229–234.

Q. Tian, Q. Wang, Q. Xie, dan J. Li, “Aqueous Solution Preparation, Structure, and Magnetic Properties of Nano-Granular ZnxFe3− xO4 Ferrite Films,” Nanoscale Res. Lett., vol. 5, no. 9, hal. 1518, 2010.

D. Zhang, Z. Di, Y. Zou, dan X. Chen, “Temperature sensor using ferrofluid thin film,” Microfluid. Nanofluidics, vol. 7, no. 1, hal. 141–144, 2009.

W. Crookes, Chemical News and Journal of Industrial Science, vol. 27. Chemical news office., 1773.

S.-Y. Yang, Y.-P. Chiu, B. Y. Jeang, H.-E. Horng, C.-Y. Hong, dan H.-C. Yang, “Origin of field-dependent optical transmission of magnetic fluid films,” Appl. Phys. Lett., vol. 79, no. 15, hal. 2372–2374, 2001.

S. Pu, X. Chen, Z. Di, dan Y. Xia, “Relaxation property of the magnetic-fluid-based fiber-optic evanescent field modulator,” J. Appl. Phys., vol. 101, no. 5, hal. 053532, 2007.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.