Hydrogenated Amorphous Silicon Density of State Analyzed by Dielectric Function Model Derived from Ellipsometric Spectroscopy

Soni Prayogi, Yoyok Cahyono, Darminto Darminto


In this study, we report the application of a functional dielectric model of scalable ellipsometric spectroscopy to investigate the optical response of materials in the optical spectrum modeling of hydrogenated amorphous silicon. ES is used to obtain the dielectric constant of the data fitting experimental. Then ψ and Δ are obtained from the analysis of the experimental comparison of the valence band and the conduction band state density with the band structure theory for a-Si: H. The analysis results are that for a-Si: H, the density of state model for all electronic transitions is obtained, whose results are consistent with experimental data from ES measurements over the entire photon energy range of 0.5–6.5 eV. Our results demonstrate the high-energy excitons and plasmons for the performance of photovoltaic devices in a-Si: H. Overall, we believe our methodology can study in detail about electron and hole interactions in semiconductors.

DOI: 10.17977/um024v7i22022p068


a-Si:H; density of state; ellipsometric spectroscopy (ES); chemical gap

Full Text:



R. E. I. Schropp, “Industrialization of hot wire chemical vapor deposition for thin film applications,” Thin Solid Films, vol. 595, pp. 272–283, Nov. 2015, doi: 10.1016/j.tsf.2015.07.054.

A. Biswas et al., “Spectroscopic ellipsometry studies of reactively sputtered nitrogen-rich GaAsN films,” J. Non-Cryst. Solids, vol. 357, no. 18, pp. 3293–3300, Sep. 2011, doi: 10.1016/j.jnoncrysol.2011.06.007.

A. Listanti, A. Taufiq, A. Hidayat, and S. Sunaryono, “Investigasi struktur dan energi band gap partikel nano TiO2 hasil sintesis menggunakan metode sol-gel,” JPSE (J. Phys. Sci. Eng.), vol. 3, no. 1, pp. 8–15, Apr. 2018, doi: 10.17977/um024v3i12018p008.

S. Prayogi, Y. Cahyono, and D. Darminto, “Electronic structure analysis of a-Si: H p-i1-i2-n solar cells using ellipsometry spectroscopy,” Opt. Quantum Electron., vol. 54, no. 11, p. 732, Sep. 2022, doi: 10.1007/s11082-022-04044-5.

S. Prayogi, Y. Cahyono, I. Iqballudin, M. Stchakovsky, and D. Darminto, “The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD,” J. Mater. Sci. Mater. Electron, vol. 32, no. 6, pp. 7609–7618, Mar. 2021, doi: 10.1007/s10854-021-05477-6.

N. Nair et al., “Influence of the properties of p-a-Si:H layer and the work function of front contact on silicon heterojunction solar cell performance,” Mater. Today Proc., vol. 49, pp. 1617–1624, Jan. 2022, doi: 10.1016/j.matpr.2021.07.421.

X. Wang et al., “Impacts of the a-Si:H interlayer nanostructure on the adhesion of the thick DLC coatings prepared by PECVD,” Appl. Surf. Sci., vol. 565, p. 150539, Nov. 2021, doi: 10.1016/j.apsusc.2021.150539.

K. W. Mas’udah, F. Astuti, and D. Darminto, “Study on physical properties of reduced graphene oxide from heating coconut shell,” JPSE J. Phys. Sci. Eng., vol. 1, no. 1, pp. 1–6, Dec. 2016, doi: 10.17977/um024v1i12016p001.

D. Hamdani, S. Prayogi, Y. Cahyono, G. Yudoyono, and D. Darminto, “The effects of dopant concentration on the performances of the a-SiOx:H(p)/a-Si:H(i1)/a-Si:H(i2)/µc-Si:H(n) heterojunction solar cell,” Int. J. Renew. Energy Dev., vol. 11, no. 1, pp. 173–181, Feb. 2022, doi: 10.14710/ijred.2022.40193.

S. Solehudin, et al, “Analysis of nanoporous semiconductor film thickness effect on short circuit current density of β-carotene dye based DSSC: Theoretical and experimental approach,” JPSE (J. Phys. Sci. Eng.), vol. 4, no. 1, pp. 1–7, Jun. 2020, doi: 10.17977/um024v4i12019p001.

D. Hamdani, S. Prayogi, Y. Cahyono, G. Yudoyono, and D. Darminto, “The influences of the front work function and intrinsic bilayer (i1, i2) on p-i-n based amorphous silicon solar cell’s performances: A numerical study,” Cogent Eng., vol. 9, no. 1, p. 2110726, Aug. 2022, doi: 10.1080/23311916.2022.2110726.

Z. Dorostghol and A. Kosarian, “Improving structural, optical, and electrical properties of μc-Si:H using non-uniform hydrogen dilution treatment on RF-PECVD prepared layers,” Mater. Sci. Semicond. Process, vol. 129, p. 105790, Jul. 2021, doi: 10.1016/j.mssp.2021.105790.

K. Bendjebbar, W. L. Rahal, D. Rached, and S. Bahlouli, “Numerical analysis of metal-semiconductor junctions ITO/p-a-Si:H and n-c-Si/Al on silicon heterojunction solar cells,” Optik, vol. 212, p. 164741, Jun. 2020, doi: 10.1016/j.ijleo.2020.164741.

Y. Luo, M. Lin, N. Zhou, H. Huang, C.-T. Tsai, and L. Zhou, “Molecular dynamics simulation study of the microstructure of a-Si:H thin film grown by oblique-angle deposition,” Phys. B Condens. Matter, vol. 545, pp. 80–85, Sep. 2018, doi: 10.1016/j.physb.2018.05.042.

S. Prayogi, M. A. Baqiya, Y. Cahyono, and Darminto, “Optical transmission of p-type a-Si:H thin film deposited by PECVD on ITO-coated glass,” Mater. Sci. Forum, vol. 966, pp. 72–76, Aug. 2019, doi: 10.4028/www.scientific.net/MSF.966.72.

Y. Cahyono, E. Yahya, M. Zainuri, S. Pratapa, and Darminto, “Quantum confinement in an intrinsic a-Si:H thin film deposited on soda lime glass substrate using PECVD,” Trans. Electr. Electron. Mater. vol. 19, no. 1, pp. 69–73, Feb. 2018, doi: 10.1007/s42341-018-0002-3.

S. Prayogi, Ayunis, Kresna, Y. Cahyono, Akidah, and Darminto, “Analysis of thin layer optical properties of A-Si:H P-Type doping CH4 and P-Type without CH4 is deposited PECVD systems,” J. Phys. Conf. Ser., vol. 853, p. 012032, May 2017, doi: 10.1088/1742-6596/853/1/012032.

D. Franta, I. Ohlı́dal, P. Klapetek, and P. R. i Cabarrocas, “Complete characterization of rough polymorphous silicon films by atomic force microscopy and the combined method of spectroscopic ellipsometry and spectroscopic reflectometry,” Thin Solid Films, vol. 455–456, pp. 399–403, May 2004, doi: 10.1016/j.tsf.2003.11.237.

S. Lee, S. Kim, Y. Kim, J. Park, and J. Yi, “Computational design of high efficiency a-Si:H/CIGS monolithic tandem solar cell,” Optik, vol. 173, pp. 132–138, Nov. 2018, doi: 10.1016/j.ijleo.2018.08.004.

J. He et al., “Structural and optoelectronic properties of a-Si:H: A new analysis based on spectroscopic ellipsometry,” Vacuum, vol. 146, pp. 409–421, Dec. 2017, doi: 10.1016/j.vacuum.2017.04.013.

J. D. Joannopoulos and M. L. Cohen, “Electronic properties of complex crystalline and amorphous phases of Ge and Si. I. Density of states and band structures,” Phys. Rev. B, vol. 7, no. 6, pp. 2644–2657, Mar. 1973, doi: 10.1103/PhysRevB.7.2644.

W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, and S.-J. Oh, “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon,” Phys. Rev. B, vol. 31, no. 8, pp. 5187–5198, Apr. 1985, doi: 10.1103/PhysRevB.31.5187.

S. Prayogi, Y. Cahyono, D. Hamdani, and Darminto, “Effect of active layer thickness on the performance of amorphous hydrogenated silicon solar cells,” Eng. Appl. Sci. Res., vol. 49, no. 2, pp. 201–208, 2022, doi: 10.14456/easr.2022.22.

Ö. Pehlivan et al., “Structural and interfacial properties of large area n-a-Si:H/i-a-Si:H/p-c-Si heterojunction solar cells,” Mater. Sci. Semicond. Process, vol. 22, pp. 69–75, Jun. 2014, doi: 10.1016/j.mssp.2014.02.002.

L. Ley, S. Kowalczyk, R. Pollak, and D. A. Shirley, “X-ray photoemission spectra of crystalline and amorphous Si and Ge valence bands,” Phys. Rev. Lett., vol. 29, no. 16, pp. 1088–1092, Oct. 1972, doi: 10.1103/PhysRevLett.29.1088.

S. Prayogi, Y. Cahyono, and Darminto, “Fabrication of solar cells based on a-Si: H layer of intrinsic double (P-ix-iy-N) with PECVD and efficiency analysis,” J. Phys. Conf. Ser., vol. 1951, no. 1, p. 012015, Jun. 2021, doi: 10.1088/1742-6596/1951/1/012015.

P.Garikepati and T. Xue, “Charge transport in a-Si:H PIN solar cells under AC excitation,” SEM. Sol. Cells, vol. 27, no. 1, pp. 69–77, Jun. 1992, doi: 10.1016/0927-0248(92)90044-P.

S. Gupta, G. Morell, and B. R. Weiner, “Role of H in hot-wire deposited a-Si:H films revisited: Optical characterization and modeling,” J. Non-Cryst. Solids, vol. 343, no. 1, pp. 131–142, Sep. 2004, doi: 10.1016/j.jnoncrysol.2004.07.008.

Copyright (c) 2022 Soni Prayogi, Yoyok Cahyono, Darminto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License