Oxygen Gas Vacuum Plasma Treatment on PVA/Chitosan/HAp Scaffold Nanofiber

Hartatiek Hartatiek, Nada Shofura Faradyana, Maulia Ingganis Wuriantika, Yudyanto Yudyanto, Muhammad Nurhuda, Masruroh Masruroh, Dionysius Joseph Djoko Herry Santjojo, Norhayati Ahmad


Scaffold in the form of nanofibers in bone tissue engineering applications continues to be developed. In this study, nanofibers are composed of PVA/CS/HAp with characteristics that can support medical applications such as bone tissue engineering. Vacuum plasma treatment was carried out to modify the nanofiber surface. The results of the morphological analysis showed that the vacuum plasma treatment of oxygen gas caused the surface of the PVA/CS/HAp nanofibers to become rougher with a change in diameter. Before the oxygen gas vacuum plasma treatment, the diameter of the nanofiber had a range of 83–365 nm. After the oxygen gas vacuum plasma treatment, the diameter had a size range of 105–293 nm. Furthermore, the vacuum plasma treatment carried out showed increased hydrophilic properties. The average contact angle values before and after oxygen gas vacuum plasma treatment were (39.0 ± 0.0005)° and (10.3 ± 0.0005)°, respectively.

DOI: 10.17977/um024v7i22022p108


vacuum plasma; nanofiber; morphology; hydrophilic

Full Text:



E. Sarigol-Calamak and C. Hascicek, “Tissue scaffolds as a local drug delivery system for bone regeneration,” in Cutting-Edge Enabling Technologies for Regenerative Medicine, H. J. Chun, C. H. Park, I. K. Kwon, and G. Khang, Eds., Singapore: Springer Singapore, 2018, ch. 25, pp. 475–493, doi: 10.1007/978-981-13-0950-2_25.

M. V. Shaik and S. Gangapatnam, “Preparation and in vitro characterization of hydroxyapatite scaffold for bone tissue engineering using bone marrow Mesenchymal cells,” Sci. Spectr., vol. 1, no. 4, pp. 439–444, Oct. 2016.

S. Naahidi et al., “Biocompatibility of hydrogel-based scaffolds for tissue engineering applications,” Biotechnol. Adv., vol. 35, no. 5, pp. 530–544, Sep. 2017, doi: 10.1016/j.biotechadv.2017.05.006.

S. Kargozar et al., “Hydroxyapatite nanoparticles for improved cancer theranostics,” J. Funct. Biomater., vol. 13, no. 3, p. 100, Jul. 2022, doi: 10.3390/jfb13030100.

P. Hui, S. L. Meena, G. Singh, R. D. Agarawal, and S. Prakash, “Synthesis of hydroxyapatite bio-ceramic powder by hydrothermal method,” J. Miner. Mater. Charact. Eng., vol. 9, no. 8, pp. 683–692, Aug. 2010, doi: 10.4236/jmmce.2010.98049.

P. Kamalanathan et al., “Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor,” Ceram. Int., vol. 40, no. 10, pp. 16349–16359, Dec. 2014, doi: 10.1016/j.ceramint.2014.07.074.

A. Farooq et al., “Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration,” Mater. Sci. Eng.: C, vol. 56, pp. 104–113, Nov. 2015, doi: 10.1016/j.msec.2015.06.006.

H. Yang, S. Masse, H. Zhang, C. Hélary, L. Li, and T. Coradin, “Surface reactivity of hydroxyapatite nanocoatings deposited on iron oxide magnetic spheres toward toxic metals,” J. Colloid Interface Sci., vol. 417, pp. 1–8, Mar. 2014, doi: 10.1016/j.jcis.2013.11.031.

C. P. Dhanalakshmi, L. Vijayalakshmi, and V. Narayanan, “Synthesis and preliminary characterization of polyethylene glycol (PEG)/hydroxyapatite (HAp) nanocomposite for biomedical applications,” Int. J. Phys. Sci., vol. 7, no. 13, pp. 2093–2101, Mar. 2012, doi: 10.5897/IJPS11.1495.

F. Mohandes and M. J. R. A. Salavati-Niasari, “Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite,” RSC Adv., vol. 4, no. 49, pp. 25993–26001, May 2014, doi: 10.1039/C4RA03534H.

G. Sargazi, D. Afzali, A. Mostafavi, and S. Y. Ebrahimipour, “Synthesis of CS/PVA biodegradable composite nanofibers as a microporous material with well controllable procedure through electrospinning,” J. Polym. Environ., vol. 26, no. 5, pp. 1804–1817, May 2018, doi: 10.1007/s10924-017-1080-8.

S. Franz, S. Rammelt, D. Scharnweber, and J. C. Simon, “Immune responses to implants–a review of the implications for the design of immunomodulatory biomaterials,” Biomater., vol. 32, no. 28, pp. 6692–6709, Oct. 2011, doi: 10.1016/j.biomaterials.2011.05.078.

C. R. Arciola, D. Campoccia, and L. Montanaro, “Implant infections: adhesion, biofilm formation and immune evasion,” Nature Rev. Microbiol., vol. 16, no. 7, pp. 397–409, Jul. 2018, doi: 10.1038/s41579-018-0019-y.

H. C. Barshilia and N. Gupta, “Superhydrophobic polytetrafluoroethylene surfaces with leaf-like micro-protrusions through Ar+ O2 plasma etching process,” Vacuum, vol. 99, pp. 42–48, Jan. 2014, doi: 10.1016/j.vacuum.2013.04.020.

P. Das et al., “Surface modification of electrospun PVA/chitosan nanofibers by dielectric barrier discharge plasma at atmospheric pressure and studies of their mechanical properties and biocompatibility,” Int. J. Biol. Macromol., vol. 114, pp. 1026–1032, Jul. 2018, doi: 10.1016/j.ijbiomac.2018.03.115.

C. Drouet, “Apatite formation: Why it may not work as planned, and how to conclusively identify apatite compounds,” Biomed. Res. Int., vol. 2013, p. 490946, doi: 10.1155/2013/490946.

A. Nur, A. Rahmawati, N. I. Ilmi, S. Affandi, and A. Widjaja, “Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method,” in AIP Conf. Proc., vol. 1586, no. 1, Feb. 2014, pp. 86–91, doi: 10.1063/1.4866736.

A. Tiwari and M. Bose, “Morphological analysis of nanoparticle agglomerates generated using DEM simulation,” Part. Sci. Technol., vol. 40, no. 3, pp. 373–381, 2022, doi: 10.1080/02726351.2021.1973162.

F. Y. Syafaat and Y. Yusuf, “Influence of Ca/P concentration on hydroxyapatite (HAp) from Asian moon scallop shell (Amusium pleuronectes),” Int. J. Nanoelectron. Mater., vol. 12, no. 3, pp. 357–362, Jul. 2019.

Y. Su, K. Li, X. Zhu, C. Wang, and Y. Zhang, “Microwave-hydrothermal method post-treatment of sprayed Ca-P coating,” Ceram. Int., vol. 45, no. 1, pp. 874–884, Jan. 2019, doi: 10.1016/j.ceramint.2018.09.258.

E. F. D. Reis et al., “Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption,” Mater. Res., vol. 9, pp. 185–191, Jun. 2006, doi: 10.1590/S1516-14392006000200014.

A. Vashist, A. Vashist, Y. K. Gupta, and S. Ahmad, “Recent advances in hydrogel based drug delivery systems for the human body,” J. Mater. Chem. B, vol. 2, no. 2, pp. 147–166, Jan. 2014, doi: 10.1039/C3TB21016B.

A. G. Sanchez et al., “Chitosan-hydroxyapatite nanocomposites: Effect of interfacial layer on mechanical and dielectric properties,” Mater. Chem. Phys., vol. 217, pp. 151–159, Sep. 2018, doi: 10.1016/j.matchemphys.2018.06.062.

L. Berzina-Cimdina and N. Borodajenko, “Research of calcium phosphates using Fourier transform infrared spectroscopy,” in Infrared Spectroscopy: Materials Science, Engineering And Technology, T. Theopanides, Ed., Reijeka, Croatia: InTech, 2012, ch. 6, pp. 123–148.

M. Ebrahimi, M.G. Botelho, and S. V. Dorozhkin, “Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research,” Mater. Sci. Eng.: C, vol. 71, pp. 1293–1312, Feb. 2017, doi: 10.1016/j.msec.2016.11.039.

R. R. Kumar and M. Wang, “Growth of brushite crystals in sodium silicate gel and their characterization,” Key Eng. Mater., vol. 192–195, pp. 19–22, Jul. 2001, doi: 10.4028/www.scientific.net/KEM.192-195.19.

V. B. Suryawanshi and R. T. Chaudhari, “Spectroscopic studies of gel grown zinc doped calcium hydrogen phosphate dihydrate crystals,” in AIP Conf. Proc., vol. 1953, no. 1, May 2018, p. 070025, doi: 10.1063/1.5032803.

N. Bano, S. S. Jikan, H. Basri, S. Adzila, and N. Shuaib, “Fabrication and characterization of nanocrystalline hydroxyapatite extracted from bovine bone at different calcination temperatures,” Int. J. Integr. Eng., vol. 11, no. 6, pp. 38–44, Sept. 2019, doi: 10.30880/ijie.2019.11.06.005.

Hartatiek, Yudyanto, S. D. Ratnasari, R. Y. Windari, and N. Hidayat, “Solid state reaction synthesis of Si-HA as potential biomedical material: An endeavor to enhance the added value of Indonesian mineral resources,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 202, no. 1, May, 2017, p. 012021, doi: 10.1088/1757-899X/202/1/012021.

I. Garcia-Orue et al., “Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications,” Int. J. Pharm., vol. 523, no. 2, pp. 556–566, May 2017, doi: 10.1016/j.ijpharm.2016.11.006.

K. Terpiłowski, A. E. Wiącek, and M. Jurak, “Influence of nitrogen plasma treatment on the wettability of polyetheretherketone and deposited chitosan layers,” Adv. Polym. Technol., vol. 37, no. 6, pp. 1557–1569, Oct. 2018, doi: 10.1002/adv.21813.

P. Sundriyal, M. Pandey, and S. Bhattacharya, “Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding,” Int. J. Adhes. Adhes., vol. 101, p. 102626, Sep. 2020, doi: 10.1016/j.ijadhadh.2020.102626.

Copyright (c) 2022 Hartatiek, Nada Shofura Faradyana, Maulia Ingganis Wuriantika, Yudyanto, Muhammad Nurhuda, Masruroh Masruroh, Dionysius Joseph Djoko Herry Santjojo, and Norhayati Ahmad

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License