Pengaruh Medan Elektromagnet terhadap Partikel Dirac dan Klein-Gordon dalam Potensial Penghalang Periodik Satu Dimensi

Arista Romadani, Erika Rani

Abstract


Suatu partikel Bosonik dan Dirac bermassa nol yang beraksi pada potensial penghalang satu dimensi telah dikaji secara mekanika kuantum relativistik dengan menggunakan persamaan Klein-Gordon dan persamaan Dirac. Persamaan ini selanjutnya mengalami modifikasi akibat pengaruh medan elektromagnetik yang dihadirkan dan pendekatan matriks telah diaplikasikan untuk mendapatkan representasi energi dan spinor eigennya. Terkhusus partikel Dirac, Hamiltonian Dirac memiliki bentuk yang identik dengan osilator harmonik sehingga representasi energi merupakan perpanjangan dari energi osilator harmonik. Selain itu fungsi eigennya melibatkan energi positif dan energi negatif yang bergerak secara eksponensial ketika melewati penghalang.

 

DOI: http://dx.doi.org/10.17977/um024v4i12019p008


Keywords


Klein-Gordon, Dirac, elektromagnetik, kuantum.

References


S. J. Woltornist et al., “Conductive Thin Films of Pristine Graphene by Solvent Interface Trapping”, ACS Nano, vol. 7, no. 8, pp. 7062–7066, 2013.

H. W. Kim et al., “Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes”, Science, vol. 342, no. 6154, pp. 91–95, 2013.

S. K. Alen, S. W. Nam, and S. A. Dastgheib, “Recent Advances in Graphene Oxide Membranes for Gas Separation Applications”, Int. J. of Molecular Sci., vol. 20, no. 22, pp. 1–20, 2019.

M. Barbier et al., “Dirac and Klein-Gordon Particles in One-Dimensional Periodic Potentials”, Phy. Rev. B - Condensed Matter and Materials Phy., vol. 77, no. 11, pp. 1–9, 2008.

Y. Zheng and T. Ando, “Hall Conductivity of A Two-Dimensional Graphite System”, Phy. Rev. B-Condensed Matter and Materials Phy., vol. 65, no. 24, pp. 2454201–24542011, 2002.

S. Ganguly and J. J. Ghosh, “Steroid Hormone Induced Alterations in Endometrium: I. Changes in Lipid Content, Swelling Pattern & Lipid Peroxidation of Mitochondria”, Indian J. of Biochemistry and Biophysics, vol. 16, no. 2, pp. 61–65, 1979.

V. P. Gusynin and S. G. Sharapov, “Unconventional Integer Quantum Hall Effect in Graphene”, Phy. Rev. Lett., vol. 95, no. 14, pp. 1–4, 2005.

M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral Tunnelling and The Klein Paradox in Graphene”, Nature Physics, vol. 2, no. 9, pp. 620–625, 2006.

A. Jellal et al., “Tunneling of Massive Dirac Fermions in Graphene Through Time-Periodic Potential”, European Phy. J. B, vol. 87, no. 6, pp. 1–19, 2014.

M. A. Zeb, K. Sabeeh, and M. Tahir, “Chiral Tunneling Through A Time-Periodic Potential in Monolayer Graphene”, Phy. Rev. B-Condensed Matter and Materials Phy., vol. 78, no. 16, pp. 1–7, 2008.

C. Bai and X. Zhang, “Klein Paradox and Resonant Tunneling in A Graphene Superlattice”, Phy. Rev. B-Condensed Matter and Materials Phy., vol. 76, no. 7, pp. 1–7, 2007.

T. Das and A. Arda, “Klein-Gordon Equation for A Charged Particle in Space Varying Electromagnetic Fields-A Systematic Study Via Laplace Transform”, Chinese J. of Phy., vol. 55, no. 2, pp. 310–317, 2017.

B. Hamil and L. Chetouani, “Moving Potential for Dirac and Klein-Gordon Equations”, Pramana – J.l of Phy., vol. 86, no. 4, pp. 737–746, 2016.

A. D. Alhaidari, H. Bahlouli, and A. Jellal, “Confined Dirac Particles in Constant and Tilted Magnetic Field”, Int. J. of Geometric Methods in Modern Phy., vol. 12, no. 05, p. 1550062, 2015.

A. Jellal, A. D. Alhaidiri, and H. Bahlouli, “Confined Dirac Fermions in A Constant Magnetic Field”, Phy. Rev. A, vol. 80, no. 1, p. 012109, 2009.

E. B. Choubabi, M. E. Bouziani, and A. Jellal, “Tunneling for Dirac Fermions in Constant Magnetic Field”, Int. J. of Geometric Methods in Modern Phy., vol. 7, no. 6, pp. 909–931, 2010.

M. I. Katsnelson and K. S. Novoselov, “Graphene: New Bridge Between Condensed Matter Physics and Quantum Electrodynamics”, Solid State Comm., vol. 143, no. 1–2, pp. 3–13, 2007.

K. Bhattacharya, Solution of The Dirac Equation in Presence of An Uniform Magnetic Field, Mexico, Universidad Nacional Autonoma de Mexico, 2008.

O. Philipsen, “An Introduction to Quantum Field Theory”, In Proc. of the School for Experimental High Energy Phy. Students, 2006.

D. Griffiths, Introduction to Elementary Particles, Weinheim, John Wiley & Sons, 2008.

H. Kleinert, “Relativistic Particles and Fields in External Electromagnetic Potential”, Particles and Quantum Fields, vol. 2, pp. 436–473, 2016.

A. Jellal, A. E. Mouhafid, and M. Daoud, “Massless Dirac Fermions in An Electromagnetic Field”, J. of Statistical Mech.: Theory and Experiment, vol. 1, 2012.




Copyright (c) 2020 Arista Romadani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.