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Abstract 

Customers and power utilities alike will benefit from smart grid technology by lowering energy prices and regulating 

generating capability. The accuracy of information sharing between main grids and smart meters is critical to the 

performance of scheduling algorithms. Customers, on the other hand, are expected to plan loads, respond to electricity 

demand alerts, engage in energy bidding, and constantly track the utility company's energy rates. Consumer loyalty can 

be improved by strengthening the connectivity infrastructure between the service provider and its customers. We suggest 

a heuristic demand-side control model for automating the scheduling of smart home appliances to optimize the comfort of 

the customers involved. Simulation findings show that the suggested hybrid solution will reduce the peak-to-average ratio 

of overall energy demand while still lowering total energy costs without sacrificing consumer convenience.                                                                        
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INTRODUCTION 

Demand-side management (DSM) is a term that refers to decisions made by energy providers at their 

customers' homes [1]. DSM systems are designed to make better use of existing electricity without the need 

for the new generation, storage, or distribution facilities. Demand response services, fuel replacement 

programs, productive energy efficiency programs, and above all, industrial or residential load control 

programs are typically included in DSM programs [2]- [4]. One of the core architectural aspects of the 

residential load control platform [5] is to reduce and transfer usage. This can only be accomplished if 

consumers are motivated to build energy-efficient structures and to be mindful of their energy usage habits. 

High-power appliances can be shifted from peak to off-peak hours with a measurable decrease in the peak-to-

average ratio (PAR) in load demand, as part of this realistic initiative. Because of the fast penetration of plug-

in hybrid electric vehicles, load shifting is projected to become much more significant (PHEVs). 

For one mile of driving, PHEVs usually need 0.2-0.3 kWh of charging power [6]. This adds a lot of 

additional load to the current delivery grid. It doubles average household demand, particularly during 

charging hours, worsening the already high PAR. A high PHEV penetration, in the absence of a properly 

reinforced device, may result in an unbalanced state, jeopardizing power quality requirements, voltage 

control problems, and even potential harm to utility and consumer equipment. 

Another approach for residential load management is direct load control (DLC) [7]-[9]. The utility 

provider can remotely monitor electricity usage and the operation of some household equipment by using 

DLC systems. DLC programs include, for example, thermal comfort devices such as heating, ventilating, and 

air conditioning (HVAC), refrigerators, generators, and light control. When it comes to home automation and 

residential load management in particular, consumers' satisfaction is a high priority and a stumbling block in 

the implementation of DLC programs [10]. 

DLC program functions are being phased out in favor of competitive pricing. Users are empowered to 

handle their loads independently voluntarily through a competitive pricing mechanism, such as shutting down 

and moving heavy loads from peak to off-peak hours [11]-[13]. Critical-peak pricing (CPP), real-time pricing 

(RTP), inclined block cost (IBR), time of use pricing (ToUP), and day-ahead pricing (DAP) are some of the 

most common and widely utilized dynamic pricing schemes. Users are advised to switch appliances from 

peak to off-peak hours with the aid of these programs. This leads to a lower PAR and lower consumer prices 

[14]. 

RELATED WORK  

In the smart grid, researchers have recently developed and deployed several cutting-edge algorithms. 

These algorithms performed well when it came to evaluating the load consumption profiles of commercial, 

residential, and industrial buildings. Researchers have optimized energy regulators and schedulers to keep 

energy costs to a minimum. 
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All other equations are measured, and the relationship is identified by a number in [1] that refers to the 

IEEE reference numbering system and is written with a comparison system. Price schemes, energy market 

priorities, and consumer preferences must all be weighed to maximize value for all stakeholders. 

The term "dynamic price" is used in comparison [9]. RTP is used to schedule smart home equipment in 

the most efficient way possible. They are mostly concerned with reducing uncommon power consumption, 

decreasing prices, and optimizing the advantages of energy storage. As compared to the usual pricing system, 

the cost of electricity is lowered by 22.6 percent, and the peak price is reduced by 11.7 percent. Writers, on 

the other hand, do not pay heed to the optimization scheme in their work. The DSM model's writers purchase 

electricity during off-peak hours and store it in a storage bank for use during peak hours. Their main focus is 

on the price reduction and holding energy in a battery reserve. Even though a lead to the formation of an 

optimum scheduling paradigm is proposed, the goals are not fulfilled. [12] explains a non-deterministic 

polynomial-time (NP) hardness-based energy optimization model The publishers use greedy following the 

ideas to complete the task of the home schedule. They use given in equations and artificial intelligence 

optimization methods in their practice to achieve optimization. The phenomenon of lower peak load and 

lower peak fluctuation is often discussed. The problem is described not only by the load demand of the 

customer but also by the cost of generation. For scheduling home appliances, the authors propose a mixed-

integer linear programming-based algorithm. The real-time pricing tariff is used to schedule home appliances 

to save money and reduce peak demand. 

References [12]-[14] use a cost-minimization approach based on a Genetic Algorithm (GA). Renewable 

energy sources (RESs) and battery storage are built into the current structure in these articles. When power 

costs are high and the energy consumption is high, RESs are expected to charge a battery bank for later use. 

A controller is designed to track the charging and discharging thresholds associated with the battery bank to 

increase battery performance and life. Furthermore, batteries are expected to charge when power costs are 

light. As costs increase, some high-priority appliances are handled from a battery supply to save the 

consumer money. 

In this article, we suggest a genetic algorithm, grey wolf optimization (GWO), and a mixed grey wolf and 

genetic algorithm meta-heuristic optimization models. (hybrid G
2
) for the control of 12 household appliances 

Instead of one-hour time slots, each day is split into 96-time slots (every 15 minutes) for appliance service. 

This is important since certain appliances, such as electric cattle and dishwashers, need less than an hour to 

complete their tasks. In this way, consumers have a lot of flexibility and options for lowering costs, PAR, and 

overall energy demand. Finally, the unscheduled, GA plan, GWO, and hybrid simulation findings are 

presented. G
2
 are shown to demonstrate the efficacy of the proposed hybrid G2 model for DSM appliance 

scheduling. 

PROPOSED ARCHITECTURE  

Smart home with multiple smart appliances is considered in this job. End users have also provided reports 

on the length of operating time (LoTs) and power rating (PR) of all appliances. The supply-side management 

layer (SSML), connectivity management layer (CML), and demand-side management layer (DSML) are the 

three sub-layers that make up the whole structure (DSML). All information about electricity generation is 

included in SSML. The energy management controller (EMC) and the appliance scheduler are used by 

DSML (AS), and schedules smart appliances based on the end users' specified LOTs The aim of a load 

balancer (LB) is to prolong appliance service to reduce the demand-supply gap and prevent breaching the 

customer demand cap. Energy forecaster (EF) and demand response manager (DRM) communicate real-time 

demand-supply data with SSML and DSML via CML. Wi-Fi, Z-wave, and Zig-Bee networking protocols are 

used by the Home Area Network (HAN) to communicate easily between EMC. Smart appliances are often 

classified into three categories: baseline loads, daily loads, and controllable loads, based on whether or not 

their service may be disrupted when triggered. EMC employs an appliance interface (AI) that manages the 

on/off operations of all smart appliances connected to the device. It's worth noting that, 

to improve convenience, EMC uses AS to stop all scheduling operations of the appliances if the interrupt is 

caused by the user. To plan these smart appliances in a home energy management scheme, this paper uses 

three meta-heuristic techniques: GA, GWO, and hybrid G2 (HEMS). Scheduling is done to save end 

consumers money on their utility bills. The Knapsack problem is used to create run-time coordination among 

smart appliances. This allows each user the ability to manage appliance activity according to their preferences. 

APPLIANCE CATEGORIZATION 

Based on their organizational activity, home appliances are divided into three subcategories. Interruptible 

machines are those whose service may be disrupted or postponed while in use, but whose operating period 

cannot be changed. Uninterruptible machines, on the other hand, are those whose service cannot be stopped 

or disrupted while they are in use. These appliances, on the other hand, maybe moved to various time slots 



22 

Frontier Energy System and Power Engineering 

ISSN: 2720-9598  

Vol. 3, No. 1, January 2021, pp. 20-27 

http://dx.doi.org/10.17977/um048v3i1p20-27 

before they begin running. 

To hold total energy usage under reasonable limits, it's vital to switch interruptible and non-interruptible 

equipment to separate time slots. To save money on power, it's best to use interruptible equipment during off-

peak hours. Base equipment, on the other hand, is those that cannot be disrupted or delayed in a home energy 

management scheme (HEMS). Refrigerators, air conditioners, lighting, and microwave ovens are examples 

of machines whose operating patterns do not alter. Table 1 lists all of the equipment used in this report, along 

with their length of operating time (LOT), power rating, and category. 

We will analyze the power grid, energy cost, and load control model for residential use in this segment. In 

the following section, we will formulate three design optimization problems based on these definitions. 

A. Power System 

We consider a smart power system with multiple load users and a single energy source, which may be a 

generator or a step-down transformer connected to the main grid. Furthermore, we presume that each user has 

an EMC capable of scheduling multiple appliances (12 in our model) at varying intervals of time (96 

intervals in a complete day, i.e., 15 minutes each). Different smart meters are interconnected not only with 

the grid but also with each other by exchanging updated information using relevant communication 

protocols. 

Let 𝑈 be the set of users, where for each user 𝑢, let 𝑙𝑢
𝑡  denotes the total load at time slot 

t ∈ T[1 … … … … … … … T] where 𝑇 = 96. Daily consumed load by a specific user u is denoted by 𝑡 ∈
[𝑙𝑢

1 … … … … … … … 𝑙𝑢
𝑡 ]This leads us to calculate the total load of all users in a single time slot across the 

whole day 𝑡 ∈ 𝑇. It is represented as 

Lt = ∑ lu
t

u∈U

                                                                                                                                                                            (1) 

Similarly, daily peak load and average load can be calculated as 

Loadpeak = maximumt∈TLt                                                                                                                                            (2) 

𝐿𝑜𝑎𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑇
∑ lu

t

u∈U

                                                                                                                                                    (3) 

From equations (2) and (3), PAR can be calculated as below 

PAR=
Loadpeak

𝑳𝒐𝒂𝒅𝒂𝒗𝒆𝒓𝒂𝒈𝒆
=

T maximumt∈TLt       

∑ 𝑙𝑢
𝑡

𝑢∈𝑈
                                                                                                                               (4) 

B. Energy Cost Model    

For each time slot 𝑡 ∈  𝑇  energy cost for electricity generation or distribution is represented 

by𝐶𝑡(𝑙𝑡). Generally, for the same load, the cost may differ in the different time slots of a day. It mostly 

depends upon the electrical price maintained by the utility at the generation site. It is worth mentioning here 

that the cost function is considered in this paper can represent either the original cost of thermal generators or 

artificial cost tariffs maintained by the utility for the proper execution of the load control programs. The 

actual energy cost function can be represented in terms of a quadratic function in equation (5) 

𝐶𝑡(𝑙𝑡)=𝑎𝑡𝐿𝑡
2 + 𝑏𝑡𝐿𝑡 + 𝑐𝑡                                                                                                                                                     (5)  

Where 𝑎𝑡  𝑏𝑡  𝑎𝑛𝑑 𝑐𝑡  ≥ 0 For each time slot 𝑡 ∈  𝑇   

C. Residential Load Control 

For an individual user u ∈  U, let =𝑈𝐴 denotes the different set of appliances, including base, interruptible 

and uninterruptible appliances in a home. For scheduling purposes, we initially define a schedule vector for 

each appliance a ∈ 𝐴𝑛 of the individual user, where n is the number of the appliances. 

𝐾𝑢,𝑎 = [𝐾𝑢,𝑎
1 … … … … … 𝐾𝑢,𝑎

𝑇 ]                                                                                                                                  (6) 

where 𝐾𝑢,𝑎
𝑡   represents scheduled energy consumption in one-time slot for appliance a by user u. We can then 

calculate the total load by utℎ user. 
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𝑙𝑢
𝑡 = ∑ 𝐾𝑢,𝑎

𝑇

𝑎∈𝐴𝑛

, 𝑡 ∈ 𝑇                                                                                                                                                          (7) 

 

In our proposed model, the main task of AS is to determine an optimum time slot in 𝑢𝑡ℎ  user’s smart 

meter for the individual appliance 𝑎 . In this way, user u can shape its daily load profile by making use of 

equation (7). It is important to mention here that the energy scheduler does not aim to reduce the power 

consumption of different appliances rather it shifts to other different time slots for minimization of PAR and 

energy cost. Initially, a user needs to initiate a start and end time slot in which a particular appliance is 

supposed to complete its task. Let the beginning time slot be represented by 𝛼𝑢,𝑎 ∈ 𝑇 and end time slot is 

represented by 𝛽𝑢,𝑎 ∈ 𝑇 a and 𝛼𝑢,𝑎< 𝛽𝑢,𝑎 

TABLE I 
APPLIANCE PARAMETERS 

Appliances 
Lot 

(slots) 

Power 

rating 

(kWh) 

Category 

Washing machine 20 1.0 Uninterruptible 

Clothes dryer 16 1.6 Uninterruptible 

Electric vehicle 36 2.0 Interruptible 

Water pump 32 2.0 Interruptible 

Humidifier 12 0.5 Interruptible 

Vacuum cleaner 24 1.5 Interruptible 

Water heater 48 2.0 Interruptible 

Dish washer 16 1.2 Interruptible 

Refrigerator 96 1.4 Base 

Air conditioner 40 1.5 Base 

Light 50 0.8 Base 

Microwave oven 16 2.0 Base 

 

For example, an electrical vehicle (EV) having 𝐸𝑢.𝑎 = 2𝐾𝑊ℎ needs 4 hours to complete its charging 

cycle for a 50 km driving range in a single day. For compiling tasks, a user must select a larger time slot 

because, in case of any interruption, the scheduler completes the task by its end time. For example, the user 

may select 𝛼𝑢.𝑎 = 12 𝑎𝑚 and 𝛽𝑢.𝑎 = 8 𝑎𝑚 Mathematically, it is represented as  

 

∑ 𝑥𝑢.𝑎
𝑡 = 𝐸𝑢.𝑎                                                                                                                                                            (8)

𝛽𝑢.𝑎

𝑡=𝛼𝑢.𝑎

 

 

where 𝑥𝑢.𝑎
𝑡  represents energy consumption vector of appliance a during t time slot by u. Also, from equation 

(8), it is concluded that appliance a schedules balances according to daily consumption requirement. 

Similarly, total energy consumption by all appliances and by all users can be summed up. 

 

∑ 𝐿𝑡

𝑡∈𝑇

= ∑ 𝑢 ∈ 𝑈 ∑ 𝑎 ∈ 𝐴𝑛𝐸𝑢.𝑎                                                                                                                                (9)   

 

Since electronic devices are divided into base, interruptible, and uninterruptible smart appliances, so in 

case of uninterruptible appliances, strict energy consumption needs to be adopted. In our case, the washing 

machine (WM) and clothes dryer (CD) have constraints that once WM task ends, CD must start its operation 

immediately In that case,𝑎𝑢.𝑎 = 1 for WM and 𝛽𝑢.𝑎 = 0 for CD. Similarly, a refrigerator is on all the time, so 

in that case 𝑎𝑢.𝑎 = 1for WM and 𝛽𝑢.𝑎= 96. Generally, a scheduler has no active impact on the operation of 

non-interruptible appliances. For a complete energy consumption profile, the standby power of interruptible 

appliances needs to be calculated. It is the power that is consumed by interruptible appliances when they are 

in idle mode.  

We need to calculate the minimum (𝛾𝑢.𝑎
𝑚𝑖𝑛𝑖𝑚𝑢𝑚) and maximum (𝛾𝑢.𝑎

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ) standby power level for 

interruptible appliances. Standby power can be assumed to be such power that a device is consuming when it 

is in non-operation mode but ready to start its operation. We can assume it as:   

 

𝛾𝑢.𝑎
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≥  𝑥𝑢.𝑎

𝑡 ≥ 𝛾𝑢.𝑎
𝑚𝑎𝑥𝑖𝑚𝑢𝑚                                                                                                                                     (10) 

 

We are now ready to calculate different optimal energy scheduling models by considering equations (1)-(10) 

in our proposed hybrid  DSM model. 
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OPTIMIZATION METHODS 

Integer linear programming (ILP), mixed integer programming (MILP), and mixed-integer nonlinear 

programming (MINLP) are traditional optimization approaches that cannot manage a large number of 

appliances. Furthermore, these approaches are computationally unreliable, making them unsuitable for 

deterministic real-time optimization. The meta-heuristic optimization strategy, on the other hand, will offer 

the best solution by taking into account user-defined constraints. We are applying a genetic algorithm (GA), 

grey wolf optimization (GWO) method, and a hybrid of both techniques to achieve real-time optimal results. 

GA is based on genes found in living organisms. Binary coded chromosomes are initially initialized at 

random. The length of chromosomes represents the total number of smart appliances, and the ON/OFF state 

of smart appliances is determined by the binary-coded pattern of chromosomes. The fitness function of GA is 

assessed once the initial population has been created, which is an objective function of this analysis. To 

create a new population, mutation and crossover are used. The produced population fitness function is then 

compared to the previous one, producing the best results. The GWO algorithm, on the other hand, is based on 

grey wolf hunting and a leadership hierarchy mechanism. In the leadership hierarchy, there are four types of 

wolves: alpha, beta, delta, and omega. Prey phases are used to execute optimizations such as hunting, 

scanning, encircling, and attacking. As a result, the search agents' positions are changed in the form of a 

location vector against prey. The location of search agents is updated before they achieve an optimum 

position in the n-dimensional search space. 

The hybrid methodology is being proposed to strike a balance between global and local search. In terms 

of discovery mode, GA excels. It also has a high degree of convergence when it comes to finding the best 

solution. The GA measures are initially used to produce an initial population of chromosomes. These 

chromosomes are potentially potential solutions to the problem. Furthermore, the ON/OFF status of smart 

appliances is represented by a few chromosomes. The fitness function is founded on GWO's objective 

function. Via GWO's velocity updating phase, the best population is regenerated. To begin, it seeks out the 

best in the area. The solution, and it achieves a global best solution based on this benefit. The cost 

minimization problem can be formulated using an optimum stopping law, and the best match value can then 

be chosen. A new stream is generated as a result of crossover and mutation. As a result, a new age 

demographic emerges, with entirely different traits from the previous one. 

 

 
Fig. 1. The proposed system architecture 

 

SIMULATION RESULTS 

In this part, we present simulation results and evaluate the proposed algorithms' accuracy. PAR 

elimination, cost minimization, and load balancing are all important features to consider when generating 

RTP signals for DSM. Each group's rate, load, and waiting time are expressed in cents, hours, and kWh. 

According to RTP, Fig. 2 depicts the load on the grid for a single home using all three methods. In RTP 

tariffs, the price of power fluctuates during the day.  

Prices are higher in the afternoon, on hot summer days, and cold winter days, in particular. Figure 3 

shows that while demand is heavy during high price rate hours, unscheduled load produces higher peaks than 

scheduled load. As a result, the cost of power for unscheduled loads is high. It also shows that, without 

impacting total load, the proposed exercise feature has the greatest cost and PAR reduction effectiveness. 

In comparison, Fig. 4 represents the load profile over several time slots over a full day. It reveals that the 

suggested hybrid model outperforms the GA and GWO models in terms of moving load to off-peak hours, 

resulting in substantial PAR and cost savings. Figure 4 portrays the cost in multiple time slots during the day; 
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as opposed to the hybrid, GWO and GA's consumption trend at peak price is high.𝐺2 approach. This affects 

the overall cost per day for the aforementioned approaches as shown in Fig. 5. It clearly shows that the price 

using hybrid is low as compared to GA and GWO. Using the hybrid 𝐺2  , the proposed approach reduces 

20% cost, which is the best among all three used approaches 

PAR results are shown in Fig. 6, where the unscheduled load is very high, and for the hybrid 𝐺2  it is 

commendable. This shows the adeptness of the proposed approach which is better than GA and GWO. In this 

case, about 50% PAR is reduced by hybrid𝐺2 . While addressing the cost and PAR, the waiting time of 

different appliances cannot be overlooked; this is highlighted in Fig. 7. Waiting time has a direct relationship 

and impact on user comfort and it is an important parameter for efficiency measurement in any proposed 

scheme. It shows that waiting time for baseload appliances for GA and GWO is higher as compared to the 

hybrid 𝐺2 . 

             

                                   Fig. 2. Load profiles                                                                Fig. 3.  Energy cost during the time slots 

            

                         Fig. 4. Energy cost during the time slots                                                      Fig. 5. Total cost under different 
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                             Fig. 6. PAR under different schemes                               Fig. 7. Waiting time for the different approaches 

During the simulation, we perceived that GA is best for a maximum number of populations. With the 

increase in the population and generation step, the difference between the lowest and highest point becomes 

negligible. On the other hand, GWO shows high performance for a small population under hundred intervals. 

Fig. 5 and Fig. 6 show that GA outperforms GWO in terms of cost reduction, peak reduction, and PAR. The 

hybrid  𝐺2   shows positive influence on both approaches by lowering PAR, cost, and peak load values. 

CONCLUSIONS 

We also provided an efficient method for load control in this paper by optimally moving or managing 

home appliances. The key goal is to make it easier for people to save money on energy. Consumers will save 

a large amount of money on electricity bills, according to the simulation findings. Artificial intelligence-

based optimization techniques are used to support customers. Users can provide a feasible approach to 

optimum power management for residential energy users by using a carefully planned appliance scheduling 

model, according to the findings. The suggested system is a combination of GA and GWO. The hybrid 

solution outperforms both the GA and the GWO. The load is calibrated such that not only are load peaks 

eliminated, but also user comfort is preserved. It's worth noting that there's a cost-parity tradeoff to consider. 

Since expense is reduced at some times, the proposed model shifts the load to off-peak hours, optimizing 

PAR. The suggested hybrid model's usefulness in terms of cost minimization is shown by the results. 

Integration and testing of RES, as well as a real-time pricing signal, will be part of future work. 
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