Optimizing Single Axis Tracking for Bat Algorithm-based Solar Cell

Machrus Ali, Tubagus Fahmi, Delief Wida Khaidir, Hidayatul Nurohmah, Budiman Budiman


Adding the solar tracking control system was an attempt to increase the efficiency of solar panels. The solar tracking control system was a control system that follows the sun position. The purpose of this solar tracking system was to position the cross-section always to face the sun. The Single Axis system in solar tracking was intended to follow the sun’s angle or solar azimuth angle from the east to the west. There needed a control optimization to get the position as desired. Optimization often used artificial intelligence to obtain the automatic best optimization, such as Bat Algorithm (BA). This research compared several methods: without control, using PID control, using PID-Auto control, and using PID-BA control. The simulations showed that the smallest elevation angle deviation was found in PID-BA controller. In conclusion, PID-BA was the best controller in this research. This research could be used as a future reference with other controllers to get the most optimized controller.

Full Text:



E. Engineering, “Design of a Charge Controller Circuit with Maximum Power Point Tracker ( MPPT ) for Photovoltaic System,” Des. Charg. Control. Circuit with maximum power point tracking(MPPT), pp. 23–24, 2012.

S. Ray and A. K. Tripathi, “Design and development of Tilted Single Axis and Azimuth-Altitude Dual Axis Solar Tracking systems,” in 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, 2017.

M. Ali, M. R. Djalal, M. Fakhrurozi, Kadaryono, Budiman, and D. Ajiatmo, “Optimal Design Capacitive Energy Storage (CES) for Load Frequency Control in Micro Hydro Power Plant Using Flower Pollination Algorithm,” in 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 2018, pp. 21–26.

M. Arrohman, R. Fajardika, M. Muhlasin, and M. Ali, “Optimasi Frekuensi Kontrol pada Sistem Hybrid Wind-Diesel Menggunakan PID Kontroler Berbasis ACO dan MFA,” J. Rekayasa Mesin, vol. 9, no. 1, pp. 65–68, May 2018.

M. Ali and M. Muhlasin, “Auto-Tuning Method for Designing Matlab DC Motor Speed Control With PID (Proportional Integral Derivative),” ADRI Int. J. Sci. Eng. Technol., vol. 1, no. 2, pp. 5–8, 2017.

D. H. Kusuma, M. Ali, and N. Sutantra, “The comparison of optimization for active steering control on vehicle using PID controller based on artificial intelligence techniques,” in 2016 International Seminar on Application for Technology of Information and Communication (ISemantic), 2016, pp. 18–22.

M. Ali and I. Robandi, “Desain Pitch Angle Controller Turbin Angin Dengan Permanent Magnetic Synchronous Generator (PMSG) Menggunakan Imperialist Competitive Algorithm (ICA),” Pros. SENTIA 2015 – Politek. Negeri Malang, vol. 7, no. 1, pp. 2085–2347, 2015.

M. N. Masrukhan, M. P. Mulyo, D. Ajiatmo, and M. Ali, “Optimasi Kecepatan Motor DC Menggunakan Pid Dengan Tuning Ant Colony Optimization (ACO) Controller,” in SENTIA-2016, Polinema, Malang, 2016, pp. B49–B52.

M. Ali, I. Umami, and H. Sopian, “Optimisasi Steering Control Mobil Listrik Auto-Pilot Menggunakan Metode Ant Colony Optimization (ACO),” J. Intake, vol. 6, no. 1, pp. 34–50, 2015.

M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, 2006.

M. Ali and A. Suhadak, “Optimisasi Steering Control Mobil Listrik Auto-Pilot Menggunakan Metode Firefly Algorithm (FA),” in Semnasinotek 2017, UN PGRI, Kediri, 2017, pp. 61–68.

H. Nurohmah, A. Raikhani, and M. Ali, “Rekonfigurasi Jaringan Distribusi Radial Menggunakan Modified Firefly Algorithms (MFA) Pada Penyulang Tanjung Rayon Jombang,” JEEE-U (Journal Electr. Electron. Eng., vol. 1, no. 2, p. 13, Nov. 2017.

Budiman, M. Ali, and M. R. Djalal, “Kontrol Motor Sinkron Permanen Magnet Menggunakan Algoritma Firefly,” in SEMANTIKOM 2017, Universitas Madura, 2017, pp. 9–16.

Y. G. Hartlambang, H. Nurohmah, and M. Ali, “Optimasi Kecepatan Motor DC Menggunakan Algoritma Kelelawar (Bat Algorithm),” in SEMANTIKOM 2017, Universitas Madura, 2017, pp. 1–8.

M. M. Sabir and T. Ali, “Optimal PID controller design through swarm intelligence algorithms for the sun tracking system,” Appl. Math. Comput., vol. 274, pp. 690–699, 2016.

A. Adhim and A. Musyafa, “Optimization of PID Controller Based on PSO for Photovoltaic Dual Axis Solar Tracking in Gresik Location – East Java,” Int. J. Eng. Technol. IJET-IJENS, vol. 16, no. 1, pp. 65–72, 2016.

M. Ali, “Kontrol Kecepatan Motor DC Menggunakan PID Kontroler Yang Ditunning Dengan Firefly Algorithm,” J. Intake, vol. 3, no. 2, pp. 1–10, 2012.

M. Ali, I. Umami, and H. Sopian, “Particle Swarm Optimization (PSO) Sebagai Tuning PID Kontroler Untuk Kecepatan Motor DC,” J. Intake, vol. 7, no. 1, pp. 10–20, 2016.

M. Ali, A. Raikhani, B. Budiman, and H. Sopian, “Algoritma Persaingan Imperialis Sebagai Optimasi Kontroler PID dan ANFIS Pada Mesin Sinkron Magnet Permanen (Imperialist Competitive Algorithm As PID Optimization and ANFIS Controller at Permanent Magnet Synchronous Machine),” JEEE-U (Journal Electr. Electron. Eng., vol. 3, no. 1, p. 57, Apr. 2019.

G. Y. Hartlambang, M. Ali, and A. Raikhani, “Unjuk Kerja Kecerdasan Buatan (Artificial Intelligence) Dalam Mengoptimalkan Kecepatan Motor Dc Dengan Menggunakan Metode Imperialist Competitive Algorithm (ICA),” J. Intake, vol. 6, no. 1, pp. 51–67, 2015.

A. Raikhani, M. Ali, D. Ajiatmo, and Budiman, “Desain Optimal Automatic Voltage Regulator Pada Pembangkit Listrik Mikro Hidro Menggunakan Fuzzy Logic Controller,” J. Intake, vol. 7, no. 1, pp. 30–39, 2016.

M. R. Djalal and M. Ali, “Particle Swarm Optimization Untuk Mengontrol Frekuensi Pada Hibrid Wind-Diesel,” J. Intake, vol. 7, no. 2, pp. 1–13, 2016.

X.-S. Yang, “Bat Algorithms,” in Nature-Inspired Optimization Algorithms, Elsevier, 2014, pp. 141–154.

DOI: http://dx.doi.org/10.17977/um049v2i2p1-5


  • There are currently no refbacks.

View My Stats