Forecasting Hourly Energy Fluctuations Using Recurrent Neural Network (RNN)
Abstract
Full Text:
PDFReferences
Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent Neural Networks for Multivariate Time Series with Missing Values,” Sci. Rep., vol. 8, no. 1, p. 6085, Apr. 2018, doi: 10.1038/s41598-018-24271-9.
C. Zhang et al., “A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data,” in 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, 2019, pp. 1409–1416, doi: 10.1609/aaai.v33i01.33011409.
F. Petropoulos and E. Spiliotis, “The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting,” Forecasting, vol. 3, no. 3, pp. 478–497, Jun. 2021, doi: 10.3390/forecast3030029.
A. Bagnall et al., “The UEA multivariate time series classification archive, 2018,” pp. 1–36, 2018, [Online]. Available: http://arxiv.org/abs/1811.00075.
A. Razaque et al., “Anomaly Detection Paradigm for Multivariate Time Series Data Mining for Healthcare,” Appl. Sci., vol. 12, no. 17, p. 8902, Sep. 2022, doi: 10.3390/app12178902.
P. T. Yamak, L. Yujian, and P. K. Gadosey, “A Comparison between ARIMA, LSTM, and GRU for Time Series Forecasting,” in Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, Dec. 2019, pp. 49–55, doi: 10.1145/3377713.3377722.
J. Feyrer, “Trade and Income—Exploiting Time Series in Geography,” Am. Econ. J. Appl. Econ., vol. 11, no. 4, pp. 1–35, Oct. 2019, doi: 10.1257/app.20170616.
J. Runge et al., “Inferring causation from time series in Earth system sciences,” Nat. Commun., vol. 10, no. 1, p. 2553, Jun. 2019, doi: 10.1038/s41467-019-10105-3.
S.-Y. Shih, F.-K. Sun, and H. Lee, “Temporal pattern attention for multivariate time series forecasting,” Mach. Learn., vol. 108, no. 8–9, pp. 1421–1441, Sep. 2019, doi: 10.1007/s10994-019-05815-0.
H. He, Q. Zhang, S. Bai, K. Yi, and Z. Niu, “CATN: Cross Attentive Tree-Aware Network for Multivariate Time Series Forecasting,” Proc. AAAI Conf. Artif. Intell., vol. 36, no. 4, pp. 4030–4038, Jun. 2022, doi: 10.1609/aaai.v36i4.20320.
J. Bernard, M. Hutter, H. Reinemuth, H. Pfeifer, C. Bors, and J. Kohlhammer, “Visual‐Interactive Preprocessing of Multivariate Time Series Data,” Comput. Graph. Forum, vol. 38, no. 3, pp. 401–412, Jun. 2019, doi: 10.1111/cgf.13698.
A. Mathew, P. Amudha, and S. Sivakumari, “Deep Learning Techniques: An Overview,” 2021, pp. 599–608.
M. Akhtar and S. Moridpour, “A Review of Traffic Congestion Prediction Using Artificial Intelligence,” J. Adv. Transp., vol. 2021, pp. 1–18, Jan. 2021, doi: 10.1155/2021/8878011.
R. Fukuoka, H. Suzuki, T. Kitajima, A. Kuwahara, and T. Yasuno, “Wind Speed Prediction Model Using LSTM and 1D-CNN,” J. Signal Process., vol. 22, no. 4, pp. 207–210, 2018, doi: 10.2299/jsp.22.207.
V. Gupta, K. Sharma, and M. S. Sangwan, “Airlines passenger forecasting using LSTM based recurrent neural networks,” Int. J. Inf. Theor. Appl., vol. 26, no. 2, pp. 178–187, 2019.
A. Sethia and P. Raut, “Application of LSTM, GRU and ICA for stock price prediction,” in Information and Communication Technology for Intelligent Systems: Proceedings of ICTIS 2018, Volume 2, 2019, pp. 479–487.
F. Masri, D. Saepudin, and D. Adytia, “Forecasting of Sea Level Time Series using Deep Learning RNN, LSTM, and BiLSTM, Case Study in Jakarta Bay, Indonesia,” e-Proceeding Eng., vol. 7, no. 2, pp. 8544–8551, 2020.
S. Huber, H. Wiemer, D. Schneider, and S. Ihlenfeldt, “DMME: Data mining methodology for engineering applications – a holistic extension to the CRISP-DM model,” Procedia CIRP, vol. 79, pp. 403–408, 2019, doi: 10.1016/j.procir.2019.02.106.
D. M. Belete and M. D. Huchaiah, “Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results,” Int. J. Comput. Appl., vol. 44, no. 9, pp. 875–886, Sep. 2022, doi: 10.1080/1206212X.2021.1974663.
S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Coordinated Batching and DVFS for DNN Inference on GPU Accelerators,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 10, pp. 2496–2508, Oct. 2022, doi: 10.1109/TPDS.2022.3144614.
P. Liu, Q. Yu, Z. Wu, S. Kang, H. Meng, and L. Cai, “A deep recurrent approach for acoustic-to-articulatory inversion,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr. 2015, pp. 4450–4454, doi: 10.1109/ICASSP.2015.7178812.
A. B. Al-Ghamdi, S. Kamel, and M. Khayyat, “Evaluation of Artificial Neural Networks Performance Using Various Normalization Methods for Water Demand Forecasting,” Proc. - 2021 IEEE 4th Natl. Comput. Coll. Conf. NCCC 2021, 2021, doi: 10.1109/NCCC49330.2021.9428856.
S. Bhanja and A. Das, “Impact of Data Normalization on Deep Neural Network for Time Series Forecasting,” pp. 5–10, 2018, [Online]. Available: http://arxiv.org/abs/1812.05519.
J. Paparrizos, C. Liu, A. J. Elmore, and M. J. Franklin, “Debunking Four Long-Standing Misconceptions of Time-Series Distance Measures,” in Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, Jun. 2020, pp. 1887–1905, doi: 10.1145/3318464.3389760.
DOI: http://dx.doi.org/10.17977/um049v5i2p50-57
Refbacks
- There are currently no refbacks.