Optimization of Double Exponential Smoothing Using Particle Swarm Optimization Algorithm in Electricity Load

Vivi Aida Fitria, Arif Nur Afandi, Aripriharta Aripriharta, Danang Arbian Sulistyo

Abstract


Electricity load forecasting plays a critical role in ensuring the efficient allocation of resources, maintenance optimization, and uninterrupted power supply. The double exponential smoothing (DES) method is widely used in forecasting time series data due to its adaptability and robustness, particularly in handling linear trends without seasonal patterns. However, determining the optimal value of the alpha parameter in DES is crucial for accurate forecasting results. This study proposes the use of the Particle Swarm Optimization (PSO) algorithm to optimize the alpha parameter in DES for electricity load forecasting. PSO is a computational method that iteratively improves candidate solutions by moving particles in the search space based on simple mathematical formulas. By optimizing the alpha parameter using PSO, we aim to enhance the accuracy of short-term electricity load forecasts. Our results demonstrate that the PSO-optimized DES approach achieves a Mean Absolute Percentage Error (MAPE) of 2.89% and an accuracy of 97.11%, indicating significant improvements in forecasting performance. While the PSO algorithm provides promising results, future research may explore the application of other metaheuristic algorithms, such as the whale or orca algorithms, to further enhance the optimization of DES parameters for electricity load forecasting. This study contributes to the advancement of forecasting techniques in the power industry, facilitating more efficient power generation and distribution planning.

Full Text:

PDF

References


I. K. Nti, M. Teimeh, O. Nyarko-Boateng, and A. F. Adekoya, “Electricity load forecasting: a systematic review,” J. Electr. Syst. Inf. Technol., vol. 7, no. 1, p. 13, Dec. 2020, doi: 10.1186/s43067-020-00021-8.

M.-R. Kazemzadeh, A. Amjadian, and T. Amraee, “A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting,” Energy, vol. 204, p. 117948, Aug. 2020, doi: 10.1016/j.energy.2020.117948.

N. Nurhamidah, N. Nusyirwan, and A. Faisol, “FORECASTING SEASONAL TIME SERIES DATA USING THE HOLT-WINTERS EXPONENTIAL SMOOTHING METHOD OF ADDITIVE MODELS,” J. Mat. Integr., vol. 16, no. 2, p. 151, Dec. 2020, doi: 10.24198/jmi.v16.n2.29293.151-157.

R. Alhindawi, Y. Abu Nahleh, A. Kumar, and N. Shiwakoti, “Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model,” Sustainability, vol. 12, no. 21, p. 9152, Nov. 2020, doi: 10.3390/su12219152.

A. Rahmawati, C. N. Ramadhanti, F. H. Ismiav, and R. Nurcahyo, “Comparing The Accuracy of Holt’s and Brown’s Double Exponential Smoothing Method in Forecasting The Coal Demand Of Company X,” Proc. Int. Conf. Ind. Eng. Oper. Manag., pp. 460–469, 2021.

O. Pavliuk, M. Medykovskyy, and T. Steclik, “Predicting AGV Battery Cell Voltage Using a Neural Network Approach with Preliminary Data Analysis and Processing,” in 2023 IEEE International Conference on Big Data (BigData), IEEE, Dec. 2023, pp. 5087–5096. doi: 10.1109/BigData59044.2023.10386137.

B. Taghezouit, F. Harrou, Y. Sun, A. H. Arab, and C. Larbes, “A simple and effective detection strategy using double exponential scheme for photovoltaic systems monitoring,” Sol. Energy, vol. 214, pp. 337–354, Jan. 2021, doi: 10.1016/j.solener.2020.10.086.

V. A. Fitria, “Parameter Optimization of Single Exponential Smoothing Using Golden Section Method for Groceries Forecasting,” ZERO J. Sains, Mat. dan Terap., vol. 2, no. 2, p. 89, 2019, doi: 10.30829/zero.v2i2.3438.

A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review,” Arch. Comput. Methods Eng. 2022 295, vol. 29, no. 5, pp. 2531–2561, Apr. 2022, doi: 10.1007/S11831-021-09694-4.

T. Eswaran and V. S. Kumar, “Particle swarm optimization (PSO)-based tuning technique for PI controller for management of a distributed static synchronous compensator (DSTATCOM) for improved dynamic response and power quality,” J. Appl. Res. Technol., vol. 15, no. 2, pp. 173–189, Apr. 2017, doi: 10.1016/j.jart.2017.01.011.

F. Kong, T. Tian, D. Lu, B. Xu, W. Lin, and X. Du, “PSO-based Machine Learning Methods for Predicting Ground Surface Displacement Induced by Shallow Underground Excavation Method,” KSCE J. Civ. Eng., vol. 27, no. 11, pp. 4948–4961, Nov. 2023, doi: 10.1007/s12205-023-0121-1.

Y. Deng, J. Zhu, and H. Liu, “The Improved Particle Swarm Optimization Method: An Efficient Parameter Tuning Method with the Tuning Parameters of a Dual-Motor Active Disturbance Rejection Controller,” Sensors, vol. 23, no. 20, p. 8605, Oct. 2023, doi: 10.3390/s23208605.

S. Li, J. Wang, H. Zhang, and Y. Liang, “Short-term load forecasting system based on sliding fuzzy granulation and equilibrium optimizer,” Appl. Intell., vol. 53, no. 19, pp. 21606–21640, Oct. 2023, doi: 10.1007/s10489-023-04599-0.

D. Guleryuz, “Forecasting outbreak of COVID-19 in Turkey; Comparison of Box–Jenkins, Brown’s exponential smoothing and long short-term memory models,” Process Saf. Environ. Prot., vol. 149, pp. 927–935, May 2021, doi: 10.1016/j.psep.2021.03.032.

D. Febrian, S. I. Al Idrus, and D. A. J. Nainggolan, “The Comparison of Double Moving Average and Double Exponential Smoothing Methods in Forecasting the Number of Foreign Tourists Coming to North Sumatera,” J. Phys. Conf. Ser., vol. 1462, no. 1, p. 012046, Feb. 2020, doi: 10.1088/1742-6596/1462/1/012046.

M. O. Okwu and L. K. Tartibu, “Particle Swarm Optimisation,” 2021, pp. 5–13. doi: 10.1007/978-3-030-61111-8_2.

T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalili, “Particle Swarm Optimization: A Comprehensive Survey,” IEEE Access, vol. 10, pp. 10031–10061, 2022, doi: 10.1109/ACCESS.2022.3142859.

M. Jain, V. Saihjpal, N. Singh, and S. B. Singh, “An Overview of Variants and Advancements of PSO Algorithm,” Appl. Sci., vol. 12, no. 17, p. 8392, Aug. 2022, doi: 10.3390/app12178392.

A. G. Gad, “Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review,” Arch. Comput. Methods Eng., vol. 29, no. 5, pp. 2531–2561, Aug. 2022, doi: 10.1007/s11831-021-09694-4.

T. Cuong-Le, T. Nghia-Nguyen, S. Khatir, P. Trong-Nguyen, S. Mirjalili, and K. D. Nguyen, “An efficient approach for damage identification based on improved machine learning using PSO-SVM,” Eng. Comput., vol. 38, no. 4, pp. 3069–3084, Aug. 2022, doi: 10.1007/s00366-021-01299-6.

E. H. Houssein, A. G. Gad, K. Hussain, and P. N. Suganthan, “Major Advances in Particle Swarm Optimization: Theory, Analysis, and Application,” Swarm Evol. Comput., vol. 63, p. 100868, Jun. 2021, doi: 10.1016/j.swevo.2021.100868.

A. Al Mamun, M. Sohel, N. Mohammad, M. S. Haque Sunny, D. R. Dipta, and E. Hossain, “A Comprehensive Review of the Load Forecasting Techniques Using Single and Hybrid Predictive Models,” IEEE Access, vol. 8, pp. 134911–134939, 2020, doi: 10.1109/ACCESS.2020.3010702.

A. Shehadeh, O. Alshboul, R. E. Al Mamlook, and O. Hamedat, “Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression,” Autom. Constr., vol. 129, p. 103827, Sep. 2021, doi: 10.1016/j.autcon.2021.103827.




DOI: http://dx.doi.org/10.17977/um049v5i2p58-64

Refbacks

  • There are currently no refbacks.


View My Stats