MATHEMATICAL MEANING IN MODELLING CONTEXT THROUGH THE ONTO-SEMIOTICS APPROACH

Khoerul Umam, Toto Nusantara, I Nengah Parta, Erry Hidayanto

Abstract


The main objective of this research will implement the onto-semiotics approach to analyse the conceptual of mathematical meaning in a modelling context corresponding to their use of the mathematical objects. Semiotics functions and mathematical object that emerged when solving mathematical modelling will be highlighted according to OSA. Students responses to modelling questions were used to classify the semiotics function that relates to the different mathematical objects.

Full Text:

PDF

References


Blum, W., & Borromeo, R. (2009). Mathematical Modelling: Can It Be Taught And Learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58.

Ero-Tolliver, I., Lucas, D., & Schauble, L. (2013). Young Children’s Thinking About Decomposition: Early Modelling Entrees to Complex Ideas in Science. Research in Science Education, 43(5), 2137–2152. https://doi.org/10.1007/s11165-012-9348-4

Font, V., Godino, J. D., & D’Amore, B. (2007). An onto-semiotic approach to representation in mathematics education. For the Learning of Mathematics, 27(2), 2–7, 14. Recuperado de http://www.jstor.org/stable/40248564

Frejd, P., & Bergsten, C. (2016). Mathematical modelling as a professional task. Educational Studies in Mathematics, 91(1). https://doi.org/10.1007/s10649-015-9654-7

García, F. J., & Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics. ZDM - International Journal on Mathematics Education, 38(3), 226–246. https://doi.org/10.1007/BF02652807

Garderen, D. Van. (2006). Imagery , and Mathematical, 39(6), 496–506.

Godino, J. D., Amore, B. D., & Font, V. (2007). AN ONTO-SEMIOTIC APPROACH TO REPRESENTATIONS IN MATHEMATICS EDUCATION. For the Learning of Mathematics, 27(2), 2–14.

Godino, J. D., & Batanero, C. (1997). CLARIFYING THE MEANING OF MATHEMATICAL OBJECTS AS A PRIORITY AREA OF RESEARCH IN MATHEMATICS EDUCATION 1. In An ICMI Study Book 1 (p. 1–17). The Netherlands: Kluwer Academic Publishers.

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM: The International Journal on Mathematics Education, 39(1–2), 127–135. https://doi.org/10.1007/s11858-006-0004-1

Godino, J. D., Granada, U. De, & Vicenç Font. (2006). ANÁLISIS DE PROCESOS DE INSTRUCCIÓN BASADO EN EL ENFOQUE ONTOLÓGICO - SEMIÓTICO DE LA COGNICIÓN MATEMÁTICA. Recherches en Didactiques des Mathematiques, 1(26), 39–88.

Kaiser, G., Blomhøj, M., & Sriraman, B. (2006). Towards a didactical theory for mathematical modelling. ZDM - International Journal on Mathematics Education, 38(2), 82–85. https://doi.org/10.1007/BF02655882

Leiss, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). Zur Rolle des Situationsmodells beim mathematischen Modellieren - Aufgabenanalysen, Schülerkompetenzen und Lehrerinterventionen. Journal fur Mathematik-Didaktik, 31(1), 119–141. https://doi.org/10.1007/s13138-010-0006-y

Malaspina, U., Wilhelmi, M. R., & Barcelona, U. De. (2008). Mathematical Objects Through the Lens of Three, 1.

Mentzer, N., Huffman, T., & Thayer, H. (2014). High school student modelling in the engineering design process. International Journal of Technology and Design Education, 24(3), 293–316. https://doi.org/10.1007/s10798-013-9260-x

Montiel, M., Wilhelmi, M. R., Vidakovic, D., & Elstak, I. (2009). Using the onto-semiotic approach to identify and analyze mathematical meaning when transiting between different coordinate systems in a multivariate context. Educational Studies in Mathematics, 72(2), 139–160. https://doi.org/10.1007/s10649-009-9184-2

Rellensmann, J., Schukajlow, S., & Leopold, C. (2017). Make a drawing. Effects of strategic knowledge, drawing accuracy, and type of drawing on students’ mathematical modelling performance. Educational Studies in Mathematics, 95(1), 53–78. https://doi.org/10.1007/s10649-016-9736-1

Schukajlow, S., Kolter, J., & Blum, W. (2015). Scaffolding mathematical modelling with a solution plan. ZDM - Mathematics Education, 47(7), 1241–1254. https://doi.org/10.1007/s11858-015-0707-2

Schukajlow, S., Krug, A., & Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational Studies in Mathematics, 89(3), 393–417. https://doi.org/10.1007/s10649-015-9608-0

Stender, P., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM - Mathematics Education, 47(7), 1255–1267. https://doi.org/10.1007/s11858-015-0741-0

Tan, L. S., & Ang, K. C. (2016). A school-based professional development programme for teachers of mathematical modelling in Singapore. Journal of Mathematics Teacher Education, 19(5). https://doi.org/10.1007/s10857-015-9305-z

Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 93(1), 129–140. https://doi.org/10.1037//0022-0663.93.1.129

Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285–325. https://doi.org/10.1007/s10648-005-8136-3


Refbacks

  • There are currently no refbacks.


International Journal of Insight for Mathematics Teaching is licensed under
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)