Hidrogen dari Reaksi Pemecahan Air Menggunakan Aluminium dengan Katalis Basa Abu Tandan Kosong Sawit

Syahrul Khairi, Erlindawati Erlindawati, Triandi Kuseno, Marcelina Marcelina, Muhammad Khalid Syafrianto

Abstract


Potensi abu tandan kosong sawit (ATKS) sebagai sumber katalis basa untuk produksi hidrogen dari hidrolisis air dengan aluminium (Al) telah dikaji menggunakan handmade reactor. Kajian ini didahului dengan penggunaan basa konvensional yakni NaOH dan KOH dilanjutkan dengan penggunaan K2CO3 dan ATKS sebagai katalis. Katalis dipreparasi melalui pengabuan tandan kosong sawit (TKS) pada suhu 600oC selama 2 jam. Karakterisasi ATKS dilakukan dengan menggunakan X-ray diffractometer (XRD) dan spektrofotometer serapan atom (AAS). ATKS mengandung logam Kalium dalam bentuk K2CO3 dan KCl, dengan total kalium sebesar 29,3 % berat. Hidrolisis air dilakukan dengan mereaksikan 0,01 g Aluminium dengan larutan KOH, NaOH, K2CO3 dan filtrat ATKS dengan variasi konsentrasi. Semakin tinggi konsentrasi katalis menyebabkan jumlah hidrogen yang dihasilkan semakin meningkat. Konversi terbesar diperoleh pada pengaplikasian KOH sebagai katalis. Penggunaan NaOH menyebabkan reaksi berjalan lebih cepat. Penggunaan K2CO3 dan flitrat ATKS juga menghasilkan hidrogen dengan kuantitas mendekati NaOH namun dengan laju reaksi yang lebih lambat.

Keywords


Abu tandan kosong sawit; hidrolisis air; Katalis basa; K2CO3; hidrogen

Full Text:

PDF

References


Ajanovic, A., Haas, R., 2021. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. Int. J. Hydrog. Energy 46, 10049–10058. https://doi.org/10.1016/j.ijhydene.2020.03.122

Blomen, L.J.M.J., Mugerwa, M.N. (Eds.), 1993. Fuel cell systems. Plenum Press, New York.

Bolt, A., Dincer, I., Agelin-Chaab, M., 2020. Experimental study of hydrogen production process with aluminum and water. Int. J. Hydrog. Energy 45, 14232–14244. https://doi.org/10.1016/j.ijhydene.2020.03.160

Fajrina, N., Tahir, M., 2019. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrog. Energy 44, 540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200

Fauzi, Y., Widiyastuti, Y.E., Satyawibawa, I., Paeru, R.H., 1992. Kelapa sawit: usaha budidaya, pemanfaatan hasil dan aspek pemasaran. Penebar Swadaya, Jakarta.

Irankhah, A., Seyed Fattahi, S.M., Salem, M., 2018. Hydrogen generation using activated aluminum/water reaction. Int. J. Hydrog. Energy 43, 15739–15748. https://doi.org/10.1016/j.ijhydene.2018.07.014

Lin, L., Yu, Z., Wang, X., 2019. Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. Angew. Chem. Int. Ed. 58, 6164–6175. https://doi.org/10.1002/anie.201809897

Lu, Y., Cheng, X., Tian, G., Zhao, H., He, L., Hu, J., Wu, S.-M., Dong, Y., Chang, G.-G., Lenaerts, S., Siffert, S., Van Tendeloo, G., Li, Z.-F., Xu, L.-L., Yang, X.-Y., Su, B.-L., 2018. Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability. Nano Energy 47, 8–17. https://doi.org/10.1016/j.nanoen.2018.02.021

Olabi, A.G., Wilberforce, T., Abdelkareem, M.A., 2021. Fuel cell application in the automotive industry and future perspective. Energy 214, 118955. https://doi.org/10.1016/j.energy.2020.118955

Pednekar, A.S., Tekade, S.P., Shende, D.Z., Wasewar, K.L., 2021. Intensification of hydrogen generation through liquid metal gallium in water splitting reaction using aluminum in presence of potassium hydroxide. Chem. Eng. Commun. 208, 126–136. https://doi.org/10.1080/00986445.2019.1694915

Safari, F., Dincer, I., 2020. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Convers. Manag. 205, 112182. https://doi.org/10.1016/j.enconman.2019.112182

Sanjaya, A.S., Prajaka, J.A., Aini, N., Soerawidjaja, T.H., 2018. Penentuan Kadar Kalium Dalam Abu Tandan Kosong Kelapa Sawit Daerah Tepian Langsat Kutai Timur Dengan Metode Ekstraksi. J. INTEGRASI PROSES 7. https://doi.org/10.36055/jip.v7i1.2614

Shwetharani, R., Nagaraju, D.H., Geetha Balakrishna, R., Suvina, V., 2019. Hydrogenase Enzyme like Nanocatalysts FeS2 and FeSe2 for Molecular Hydrogen Evolution Reaction. Mater. Lett. 248, 39–42. https://doi.org/10.1016/j.matlet.2019.03.131

Sibarani, J., Khairi, S., Yoeswono, Y., Wijaya, K., Tahir, I., 2010. EFFECT OF PALM EMPTY BUNCH ASH ON TRANSESTERIFICATION OF PALM OIL INTO BIODIESEL. Indones. J. Chem. 7, 314–319. https://doi.org/10.22146/ijc.21675

Tekade, S.P., Pednekar, A.S., Jadhav, G.R., Kalekar, S.E., Shende, D.Z., Wasewar, K.L., 2020. Hydrogen generation through water splitting reaction using waste aluminum in presence of gallium. Int. J. Hydrog. Energy 45, 23954–23965. https://doi.org/10.1016/j.ijhydene.2019.09.026

Zhai, S., Rojas, J., Ahlborg, N., Lim, K., Toney, M.F., Jin, H., Chueh, W.C., Majumdar, A., 2018. The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Energy Environ. Sci. 11, 2172–2178. https://doi.org/10.1039/C8EE00050F




DOI: http://dx.doi.org/10.17977/um0260v5i22021p001

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Syahrul Khairi, Erlindawati Erlindawati, Triandi Kuseno, Marcelina Marcelina, Muhammad Khalid Syafrianto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

      

References Tool:

 

 

View My Stats