Studi Sintesis, Karakterisasi, dan Sifat Magnetik Senyawa Kompleks Nikel-N,N’-Dietiltiourea klorida

Husni Wahyu Wijaya, Alfida Rahmah, Meyga Evi Ferama Sari, Siti Hartinah

Abstract


Senyawa kompleks dari garam nikel dengan ligan N,N’-dietiltiourea (detu) perbandingan mol 1:4 berhasil disintesis dan dikarakterisasi dengan metode reaksi langsung dan refluks. Kompleks Ni-detu(DR) dan Kompleks Ni-detu(R) yang secara berurutan disintesis dengan metode langsung dan refluks mempunyai  titik lebur  159-161°C dan 114-116°C. Analisis data FT-IR kedua sampel menunjukkan ikatan υ(N-H) Ni-detu berada pada rentang 3233-3235 cm-1, υ(C-H) 2964-2974 cm-1, υ(C-N) 1562-1579 cm-1, dan υ(C=S) 646-653 cm-1. Analisis refinement data XRD diperoleh Rwp sebesar 11,63% menunjukkan senyawa yang terbentuk mempunyai kemiripan struktur dengan senyawa kompleks [Ni(detu)4]Cl2. Hasil pengukuran VSM pada kompleks hasil sintesis Ni-detu(DR) dan Ni-detu(R) menujukkan keduanya bersifat diamagnetik.


Keywords


Senyawa kompleks; Nikel-N,N’-Dietiltiourea; Tungstat; sifat magnetik

Full Text:

PDF

References


Ahmad, S., Amir, Q., Naz, G., Fazal, A., Fettouhi, M., Isab, A. A., Rüffer, T., & Lang, H. (2012). Synthesis and crystal structures of cadmium iodide complexes of N,N’-diethylthiourea and 1,3-diazinane-2-thione. Journal of Chemical Crystallography, 42(6), 615–620. https://doi.org/10.1007/s10870-012-0291-z

Ahmad, S., Fettouhi, M., Roisnel, T., Alotaibi, M. A., Alharthi, A. I., Malik, M. R., Ahmad, I., & Isab, A. A. (2017). Structural diversity in pseudohalide complexes of cadmium(II) with N-methylthiourea (Metu): Polymeric [Cd(Metu)2(NCS)2]n versus monomeric [Cd(Metu)2(CN)2]. Journal of Coordination Chemistry, 70(21), 3692–3701. https://doi.org/10.1080/00958972.2017.1398824

Ajibade, P. A., Zulu, N. H., & Oyedeji, A. O. (2013). Synthesis, Characterization, and Antibacterial Studies of Some Metal Complexes of Dialkyl Thiourea: The X-Ray Single Crystal Structure of [CoCl2(detu)2]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43(5), 524–531. https://doi.org/10.1080/15533174.2012.741179

Al-Omair, M. A., Touny, A. H., & Saleh, M. M. (2017). Reflux-based synthesis and electrocatalytic characteristics of nickel phosphate nanoparticles. Journal of Power Sources, 342, 1032–1039. https://doi.org/10.1016/j.jpowsour.2016.09.079

Alfurayj, I. A., Young, V. G., & Jensen, M. P. (2016). Structural Characterization of Thermochromic and Spin Equilibria in Solid-State Ni(detu)4Cl2 (detu = N,N′-Diethylthiourea). Inorganic Chemistry, 55(4), 1469–1479. https://doi.org/10.1021/acs.inorgchem.5b02203

Arslan, H., Binzet, G., Kavak, G., Kulcu, N., Ozbey, S., & Florke, U. (2013). Synthesis and Characterization of Novel Thiourea Derivatives and Their Nickel and Copper Complexes. Journal of Chemistry, 2013(II), 816–819.

Del Campo, R., Criado, J. J., García, E., Hermosa, M. R., Jiménez-Sánchez, A., Manzano, J. L., Monte, E., Rodríguez-Fernández, E., & Sanz, F. (2002). Thiourea derivatives and their nickel(II) and platinum(II) complexes: Antifungal activity. Journal of Inorganic Biochemistry, 89(1–2), 74–82. https://doi.org/10.1016/S0162-0134(01)00408-1

Jhung, S. H., Lee, J. H., Cheetham, A. K., Férey, G., & Chang, J. S. (2006). A shape-selective catalyst for epoxidation of cyclic olefins: The nanoporous nickel phosphate VSB-5. Journal of Catalysis, 239(1), 97–104. https://doi.org/10.1016/j.jcat.2006.01.020

Lopez-Dominguez, V., Quesada, A., Guzmán-Mínguez, J. C., Moreno, L., Lere, M., Spottorno, J., Giacomone, F., Fernández, J. F., Hernando, A., & García, M. A. (2018). A simple vibrating sample magnetometer for macroscopic samples. Review of Scientific Instruments, 89(3). https://doi.org/10.1063/1.5017708

Manikandan, A., Judith Vijaya, J., & John Kennedy, L. (2013). Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Physica E: Low-Dimensional Systems and Nanostructures, 49, 117–123. https://doi.org/10.1016/j.physe.2013.02.013

Mega Wahyuni, R., Wahyu Wijaya, H., Evi Ferama Sari, M., Wayan Dasna, I., & Farida, N. (2022). Synthesis and Characterization of Complex Compounds from Cadmium(II) Chloride and Cobalt(II) Chloride with N,N’-Diethylthiourea. The Journal of Pure and Applied Chemistry Research, 11(1), 1–8. https://doi.org/10.21776/ub.jpacr.2022.011.01.640

Mohapatra, R. K., Das, P. K., Pradhan, M. K., El-Ajaily, M. M., Das, D., Salem, H. F., Mahanta, U., Badhei, G., Parhi, P. K., Maihub, A. A., & E-Zahan, M. K. (2019). Recent Advances in Urea- and Thiourea-Based Metal Complexes: Biological, Sensor, Optical, and Corroson Inhibition Studies. Comments on Inorganic Chemistry, 39(3), 127–187. https://doi.org/10.1080/02603594.2019.1594204

Muthu, K., & Meenakashisundaram, S. P. (2012). Growth and characterization of Hexakis(thiourea)nickel(II) nitrate crystals. Journal of Crystal Growth, 352(1), 158–162. https://doi.org/10.1016/j.jcrysgro.2012.01.024

Pérez, H., O’Reilly, B., Plutín, A. M., Martínez, R., Durán, R., Collado, I. G., & Mascarenhas, Y. P. (2011). Synthesis, characterization, and crystal structure of Ni(II) and Cu(II) complexes with N- furoyl- N ′, N ′-diethylthiourea: antifungal activity . Journal of Coordination Chemistry, 64(16), 2890–2898. https://doi.org/10.1080/00958972.2011.608426

Puglisi, C., & Levitus, R. (1967). Some substituted thiourea complexes of nickel (II) thiocyanate. Journal of Inorganic and Nuclear Chemistry, 29(4), 1069–1077. https://doi.org/10.1016/0022-1902(67)80091-5

Wahyuni, R. M. (2021). SINTESIS DAN KARAKTERISASI SENYAWA KOMPLEKS IONIK DARI KADMIUM DIKLORIDA DENGAN N,N’- DIETILTIOUREA. https://doi.org/10.14710/jksa.19.3.94-98

Yousef, R. I., Mahmoud, N. F. H., El-Hosiny, F. I., Kühn, F. E., & Bassioni, G. (2021). Electric and magnetic properties of cobalt, copper and nickel organometallic complexes for molecular wires. Ain Shams Engineering Journal, 12(2), 2135–2144. https://doi.org/10.1016/j.asej.2020.12.002

Zhan, Y., Lu, M., Yang, S., Xu, C., Liu, Z., & Lee, J. Y. (2016). Activity of transition-metal (manganese, iron, cobalt, and nickel) phosphates for oxygen electrocatalysis in alkaline solution. ChemCatChem, 8(2), 372–379. https://doi.org/10.1002/cctc.201500952




DOI: http://dx.doi.org/10.17977/um0260v7i12023p016

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Alfida Rahmah, Meyga Evi Ferama Sari, Husni Wahyu Wijaya

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

      

References Tool:

 

 

View My Stats