Imajinasi matematis siswa field independent dan field dependent dalam menyelesaikan soal HOTS

Eva Rizkiyanti, Ummu Sholihah, Sutopo Sutopo

Abstract


Abstract

Imagination is the basis of figurative thinking that allows a person to solve problems without practical action. Mathematical imagination has nine indicators: exploration, intuition, novelty, sensitivity to productivity, elaboration, crystallization, transformation, and effectiveness. This study aims to 1) Analyze the Mathematical Imagination of field independent students in solving HOTS problems, 2) Analyze the Mathematical Imagination of field dependent students in solving HOTS problems. This research uses a qualitative approach by a type of case study research. The instruments used GEFT test, Mathematical Imagination test and interview. This study took 4 students consisting of 2 field independent students and 2 field dependent students. The results showed that the mathematical imagination of field independent students gave rise to nine indicators. While the mathematical imagination of field dependent students only raises five indicators, namely intuition, exploration, transformation, crystallization and sensitivity. 

Keywords: Mathematical imagination, Field Independent, Field Dependent, HOTS Problem


Full Text:

PDF

References


Abidin, Z., & Jarmita, N. (2020). Studentsâ€TM Intuition of Field Independent and Field Dependent in Solving Divergence Mathematical Problem. Kreano, Jurnal Matematika Kreatif-Inovatif, 11(2), 223–235. https://doi.org/10.15294/kreano.v11i2.26804

Amalia, F., Wildani, J., & Rifa’i, M. (2020). Literasi Statistik Siswa Berdasarkan Gaya Kognitif Field Dependent dan Field Independent. Jurnal Edukasi Matematika Dan Sains, 8(1), 1. https://doi.org/10.25273/jems.v8i1.5626

Hendri, R., Elniati, S., & Syarifuddin, H. (2019). Analisis Kemampuan Berpikir Kreatif Matematika Peserta Didik Dalam Menyelesaikan Soal Open Ended di Kelas Viii Smpn 4 Bukittinggi. Maret, 8(1), 110–116.

Hsu, Y. (2012). Psychological and Environmental Predictors of Student Imagination: The Mediating Role of Generative Cognition. 41–56.

Kamandoko, & Suherman. (2019). Profil Intuisi Matematis Siswa Dalam Pemecahan Masalah Matematika Ditinjau Dari Gaya Kognitif Field Independent Dan Field Dependent. Jurnal Penelitian Didaktin Matematika. 3(1), 37-50.

Lian, C., Chang, C. C., Chang, Y., & Lin, L. J. (2012). The exploration of indicators of imagination. Turkish Online Journal of Educational Technology, 11(3), 366–374.

Mahfut, M., Sunardi, Yudianto, E., Purnomo, R. C., & Firmansyah, F. F. (2020). Deduction level of undergraduate students’ imagination in solving geometrical problem. Journal of Physics: Conference Series, 1465(1). https://doi.org/10.1088/1742-6596/1465/1/012062

Nopriana, T. (2015). Disposisi Matematis Siswa Melalui Model Pembelajaran Geometri Van Hiele. FIBONACCI Jurnal Pendidikan Matematika & Matematika, 80–94.

Nurbaya, S., & Warmi, A. (2021). Analisis kemampuan eksplorasi matematis siswa kelas VIII pada materi statistika A. Pendahuluan Pendidikan merupakan kebutuhan utama manusia sebagai makhluk hidup yang berpikir yang membedakan dengan makhluk hidup lainnya. Karena dengan adanya pendidikan. 12(3), 318–329.

Nurcahyono, N. A., & Novarina, E. (2020). Analisis Rencana Pelaksanaan Pembelajaran Kurikulum 2013 Berdasarkan Indikator Kemampuan Imajinasi Matematis Siswa. JKPM (Jurnal Kajian Pendidikan Matematika), 6(1), 121. https://doi.org/10.30998/jkpm.v6i1.8291

Nurcahyono, N. A., Suryadi, D., & Prabawanto, S. (2019). Analysis of Students’ Mathematical Imagination Ability in Solving Problems. Journal of Physics: Conference Series, 1179(1). https://doi.org/10.1088/1742-6596/1179/1/012044

Nurcahyono, N. A., Suryadi, D., Prabawonto, S., & Novarina, E. (2020). Sequence Indicators of Junior High School Students’ Mathematical Imagination Abilities. International Journa L of Education, Information Technology and Others (Ijeit), 2(1), 278–285. https://doi.org/10.5281/zenodo.3750959

Prihatiningsih, M., & Ratu, N. (2020). Analisis Tingkat Berpikir Kreatif Siswa Ditinjau Dari Gaya Kognitif Field Dependent dan Field Independent. Jurnal Cendekia: Jurnal Pendidikan Matematika, 4(1), 353–364. https://doi.org/10.31004/cendekia.v4i2.218

Sa’o, S. (2016). Berpikir Intuitif sebagai Solusi Mengatasi Rendahnya Prestasi Belajar Matematika. Jurnal Review Pembelajaran Matematika, 1(1), 43–56. https://doi.org/10.15642/jrpm.2016.1.1.43-56

Saraswati, P. M. S., & Agustika, G. N. S. (2020). Kemampuan Berpikir Tingkat Tinggi Dalam Menyelesaikan Soal HOTS Mata Pelajaran Matematika. Jurnal Ilmiah Sekolah Dasar, 4(2), 257. https://doi.org/10.23887/jisd.v4i2.25336

Van Alphen, P. (2011). Imagination as a transformative tool in primary school education (Vol. 2, Issue 2). www.rosejourn.com

Wahyuni, I., & Alfiana, E. (2022). Analisis Kemampuan Eksplorasi Matematis Siswa Kelas X Pada Materi Fungsi Komposisi. Jurnal Inovasi Pendidikan Dan Pembelajaran Matematika, 8(1).

Wibowo, T., Sutawidjaja, A., As’ari, A. R., & Sulandra, I. M. (2017). The Stages of Student Mathematical Imagination in Solving Mathematical Problems. International Education Studies, 10(7), 48. https://doi.org/10.5539/ies.v10n7p48




DOI: http://dx.doi.org/10.17977/um076v8i12024p47-61

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 EVA RIZKIYANTI

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JKPM Indexed By:

        

 



Jurnal Kajian Pembelajaran Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Creative Commons License

View My Stats