Evaluating Storage and Effective Moduli of In Situ Polymerised and Melt Extruded PA6 Graphite (G) Composites.

Muneer Umar, Michael Ikpi Ofem, Auwal Sani Anwar, Muhammad Murtala Usman


Four  PA6/graphite  (G)  composites  systems  were  made.  Two  using  in  situ  polymerisation  equivalent  in mixing strain and two systems melt extrusion of equivalent processing strain. The effective modulus of the carbons, room temperature storage modulus and storage modulus  at  80⁰C  were  evaluated.  The composite/unfilled PA6 ratios at E25 and that at E80 for the in situ polymerised system IG 40/10 are 1.37 and  1.63,  respectively.  For  the  in  situ  polymerised  system  IG  20/20,  the  same  were  1.96  and  2.28, respectively. For the melt-extruded systems, G 100/6 had the best E25 ratio of 1.67 and E80 of 2.03, whereas the same for G 200/3 system were respectively 1.87 and 2.64. While the better storage modulus properties exhibited by IG 20/20 in the in situ polymerised system is associated with a better filler connectivity network that enhanced heat dissipation. The better values shown in the G 200/3 melt-extruded system is associated with the lesser extrusion, which significantly reduced the tendency to thermal decay. Effective modulus for the in situ polymerised systems IG 40/10 and IG 20/20 were 7.5GPa and 8.9GPa while that of melt-extruded systems G200/3 and G100/6 tallied at 8.2 GPa.


Effective-modulus, in situ-polymerisation, melt-extrusion, storage-modulus

Full Text:



Vaia, R. A., and Wagner, H. D.“Framework for nanocomposites”, Materials Today, vol. 7(11), 32–37, 2004.

Rao, C. N. R., Biswas, K., Subrahmanyam, K. S., and Govindaraj, A., “Graphene, the new nanocarbon”, Journal of Materials Chemistry, 19(17), pp. 2457–2469, 2009.

Soldano, C., Mahmood, A., and Dujardin, E. “Production, properties and potential of grapheme”,Carbon, vol. 48(8), pp. 2127–2150, 2010. [4] Verdejo, R., Bernal, M.M., Romasanta, L.J., and Lopez-Manchado, M.A.“Graphene filled polymer nanocomposites”, Journal of Materials Chemistry, vol. 21(10), pp. 3301-3310, 2011.

Ramanathan, T., Stankovich, S., Dikin, D.A., Liu, H., Shen, H., Nguyen, S.T., and Brinson, L.C.“Graphitic nanofillers in PMMA nanocomposites-an investigation of particle size and dispersion and their influence on nanocomposite properties”, Journal of Polymer Science Part B: Polymer Physics, vol. 45(15), pp. 2097-2112, 2007.

Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., Bhowmick, A. K. “A review on the mechanical and electrical properties of graphite and modified graphite-reinforced polymer composites”, Progress in Polymer Science, vol. 36(5), 638-670, 2011.

Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R. E. “Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview”, Journal of composite materials, vol. 40(17), pp. 1511-1575, 2006.

Tung, J., Gupta, R., Simon, G., Edward, G., and Bhattacharya, S. “Rheological and mechanical comparative study of in situ polymerised and melt-blended nylon 6 nanocomposites” Polymer, vol. 46(23), pp. 10405-10418, 2005.

Umar, M., Ofem, M.I., Anwar, A.S., and Salisu, A.G. “Thermogravimetric analysis (TGA) of PA6/G and PA6/GNP composites using two processing streams. Journal of King Saud University - Engineering Sciences. https://www.sciencedirect.com/science/article/pii/S1018363920302968 (2020)

Menzel, J.D., and Prime, R.B “Thermal analysis of polymers: Fundamentals and Applications”, John Wiley & Sons Inc 2009

Campbell, D., Pethrick, R.A., and White, J.R.“Polymer Characterisation:Physical Techniques” Taylor & Francis, Second Edition ed. 2000.

Shen, L. Phang, I.Y., and Liu, T. “Nanoindentation studies on polymorphism of nylon 6”, Polymer testing, vol. 25(2), pp. 249-253, 2006.

Wilkinson, A.N., Man, Z., Stanford, J.L., Matikainen, P., Clemens, M.L., Lees, G.C., and Liauw, C.M. “Structure and dynamic mechanical properties of melt intercalated polyamide 6-montmorillonite nanocomposites”, Macromolecular Materials and Engineering, vol. 291(8), pp. 917-928, 2006.

Horský, J. Kolařík, J.,and Fambri. L. Structure and Mechanical Properties of Composites of Poly (6‐hexanelactam) Combining Solid Tribological Additives and Reinforcing Components. Macromolecular Materials and Engineering, vol. 289(4), pp. 324-333, 2004.

Kim, H.and Macosko, C.W. “Processing-property relationships of polycarbonate/graphene composites”, Polymer, vol. 50(15), pp. 3797-3809, 2009.

Kolařík, J. and Janáček. J. “Secondary (β) Relaxation Process of Alkaline Polycaprolactam Swollen by Low Molecular Weight Substances”, Journal of Polymer Science Part C: Polymer Symposia. 1967. Wiley Online Library [17] Ahmadi, S., Morshedian, J., Hashemi, S., Carreau, P., and Leelapornpisit, W.“Novel Anionic Polymerization of ε-Caprolactam Towards Polyamide 6 Containing Nanofibrils”, Iranian Polymer Journal, vol. 19(3), pp. 229-240, 2010.

Horský, J. Kolařík, J., and Fambri. L.“Composites of alkaline poly(6-hexanelactam) with solid lubricants: one-step synthesis, structure, and mechanical properties”, Die Angewandte Makromolekulare Chemie, vol. 271(1), pp. 75-83, 1999.

Udipi, K., Davé, R.S., Kruse, R.L., and Stebbins, L.R.“Polyamides from lactams via anionic ring-opening polymerisation: 1. Chemistry and some recent findings”, Polymer, vol. 38(4), pp. 927-938, 1997.

Davé, R.S., Kruse, R.L., and Stebbins, L.R., and Udipi, K.“Polyamides from lactams via anionic ring-opening polymerisation: 2. Kinetics” Polymer, vol. 38(4), pp. 939-947, 1997.

Ueda, K., Yamada, K., Nakai, M., Matsuda, T., Hosoda, M., and Tai, K. “Synthesis of high molecular weight nylon 6 by anionic polymerisation of ε-caprolactam”, Polymer Journal, vol. 28(5), pp. 446-451, 1996.

Rijswijk, K. van, Bersee, H.E.N., Jager, W.F., and Picken, S.J.“Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic composites: choice of activator and initiator”, Composites Part A: Applied Science and Manufacturing, vol. 37(6), pp. 949-956, 2006.

Clingerman, M.L.“Development and modelling of electrically conductive composite materials”, PhD Thesis, 2001, Michigan Technological University.

Clingerman, M.L., Weber, E.H., King, J.A., Schulz, K.H“Synergistic effect of carbon fillers in electrically conductive nylon 6, 6 and polycarbonate-based resins”, Polymer Composites, vol. 23(5), 911-924, 2002.

Gubbels, F., Blacher, S., Vanlathem, E., Jerome, R., Deltour, R., Brouers, F., and Teyssie, Ph.“Design of electrical composites: determining the role of the morphology on the electrical properties of carbon black filled polymer blends”, Macromolecules, vol. 28(5), pp. 1559-1566, 1995.

He, F., Fan, J., and Lau, S.“Thermal, mechanical, and dielectric properties of graphite-reinforced poly (vinylidene fluoride) composites” Polymer Testing, vol. 27(8), pp. 964-970, 2008.

Ma, P.C., Siddiqui, N.A., Marom, G., and Kim, J.K. “Dispersion and functionalisation of carbon nanotubes for polymer-based nanocomposites: a review”, Composites Part A: Applied Science and Manufacturing, vol. 41(10), pp. 1345-1367, 2010.

Ning, N., Fu, S., Zhang, W., Chen, F., Wang K, Deng H, Zhang, Q., and Q. “Realising the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallisation” Progress in Polymer Science, vol. 37(10), pp. 1425-1455, 2012.

Shelley, J., Mather, P., and DeVries, K. “Reinforcement and environmental degradation of nylon-6/clay nanocomposites”, Polymer, 42(13):5849-5858, 2001.

Priya, L., and Jog, J. “Poly (vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: Crystallisation and dynamic mechanical behavior studies”, Journal of Polymer Science Part B: Polymer Physics.40(15), pp. 1682-1689, 2002.

Tsagaropoulos, G., and Eisenberg, A. “Dynamic mechanical study of the factors affecting the two glass transition behaviour of filled polymers. Similarities and differences with random ionomers”, Macromolecules, vol. 28(18), pp. 6067-6077, 1995.

Milliman, H. W., Ishida, H., and Schiraldi, D.A. “Structure property relationships and the role of processing in the reinforcement of nylon 6-POSS blends”, Macromolecules,

vol. 45(11), pp. 4650-4657, 2012.

Kelar, K., and Jurkowski B. “Properties of anionic polymerised ε-caprolactam in the presence of carbon nanotubes”, Journal of Applied Polymer Science, vol. 104(5), pp. 3010-3017, 2007.

DOI: http://dx.doi.org/10.17977/um016v5i12021p017


  • There are currently no refbacks.

Copyright (c) 2021 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats