The Effect of Multi-Extrusion Process of Polylactic Acid on Tensile Strength and Fracture Morphology of Filament Product

Muhamad Syaifuddin, Heru Suryanto, Suprayitno Suprayitno


Polylactic acid (PLA) is one of the most used materials in FDM 3D Printing. Large-scale consumption of PLA on an industrial scale could cause environmental and efficiency problems. Thus, PLA waste and industry waste need to be recycled to limit excessive waste. This study aimed to investigate the change in mechanical property, morphology, and structure of mechanically recycled PLA. Recycling was performed 12 times using the extrusion process with an extrusion temperature nozzle of 170°C. The SEM, structural analysis, and amorphous-crystalline analysis used XRD. The results showed a gradual decrease of tensile strength from each recycle with a total of 20% (13.22 MPa). The decrease percentage equalled the number of recycling. After the 9th recycle, PLA experienced a drastic tensile strength decrease, in which the 12th recycle tensile strength had a 14% (8.17 MPa) reduction. The morphology analysis of the tensile test sample presented significant morphology change, in which morphology defects such as void, flakes, and cracks appeared after the 6th recycle. Although, until 12 times extrusion, it did not significantly affect the PLA phase shape. Mechanical recycle using a multi-extrusion process is not recommended exceeding six times


Extrusion, microstructure, PLA, recycle, tensile strength.

Full Text:



Wickramasinghe, S., Do, T., and Tran, P., “FDM-Based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments,” Polymers (Basel)., vol. 12 (7), pp. 1–42, 2020, doi: 10.3390/polym12071529.

Shahrubudin, N., Lee, T. C., and Ramlan, R., “An overview on 3D printing technology: Technological, materials, and applications,” Procedia Manuf., vol. 35, pp. 1286–1296, 2019, doi: 10.1016/j.promfg.2019.06.089.

Mohanty, A. K., Misra, M., and Hinrichsen, G., “Biofibres, biodegradable polymers and biocomposites: An overview,” Macromol. Mater. Eng., vol. 276–277, pp. 1–24, 2000.

Barletta, M., Pizzi, E., Puopolo, M., and Vesco, S., “Design and manufacture of degradable polymers: Biocomposites of micro-lamellar talc and poly(lactic acid),” Mater. Chem. Phys., vol. 196, pp. 62–74, 2017, doi: 10.1016/j.matchemphys.2017.04.036.

Soroudi, A. and Jakubowicz, I., “Recycling of bioplastics, their blends and biocomposites: A review,” Eur. Polym. J., vol. 49 (10), pp. 2839–2858, 2013, doi: 10.1016/j.eurpolymj.2013.07.025.

Chaitanya, S. and Singh, I., “Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding,” Mater. Manuf. Process., vol. 32 (5), pp. 468–474, 2017, doi: 10.1080/10426914.2016.1198034.

Rauwendaal, C., Understanding Extrusion, Third Edit. Carl Hanser Verlag GmbH & Co. KG, 2018. doi: 10.3139/

Niaounakis, M., “Reuse,” Biopolym. Reuse, Recycl. Dispos., pp. 95–105, 2013, doi: 10.1016/b978-1-4557-3145-9.00003-8.

Maga, D., Hiebel, M., and Thonemann, N., “Life cycle assessment of recycling options for polylactic acid,” Resour. Conserv. Recycl., vol. 149 (October 2018), pp. 86–96, 2019, doi: 10.1016/j.resconrec.2019.05.018.

Rybicka, J., Tiwari, A., and Leeke, G. A., “Technology readiness level assessment of composites recycling technologies,” J. Clean. Prod., vol. 112 (January), pp. 1001–1012, 2016, doi: 10.1016/j.jclepro.2015.08.104.

Yang, Y., Boom, R., Irion, B., van Heerden, D. J., Kuiper, P., and de Wit, H., “Recycling of composite materials,” Chem. Eng. Process. Process Intensif., vol. 51, pp. 53–68, 2011, doi: 10.1016/j.cep.2011.09.007.

Badia, J. D., Strömberg, E., Karlsson, S., and Ribes-Greus, A., “Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance,” Polym. Degrad. Stab., vol. 97 (4), pp. 670–678, 2012, doi: 10.1016/j.polymdegradstab.2011.12.019.

Anderson, I., “Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid,” 3D Print. Addit. Manuf., vol. 4 (2), pp. 110–115, 2017, doi: 10.1089/3dp.2016.0054.

Badia, J. D. and Ribes-Greus, A., “Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques,” Eur. Polym. J., vol. 84, pp. 22–39, 2016, doi: 10.1016/j.eurpolymj.2016.09.005.

Zenkiewicz, M., Richert, J., Rytlewski, P., Moraczewski, K., Stepczyńska, M., and Karasiewicz, T., “Characterisation of multi-extruded poly(lactic acid),” Polym. Test., vol. 28 (4), pp. 412–418, 2009, doi: 10.1016/j.polymertesting.2009.01.012.

Chai, Y., Chen, X. B., Zhang, D., Lynch, J., Birbilis, N., Qin, Q. H., Smith, P. N., and Li, R. W., “Laser polished fused deposition poly-lactic acid objects for personalized orthopaedic application,” SN Appl. Sci., vol. 2 (11), 2020, doi: 10.1007/s42452-020-03637-7.

Boparai, K. S. and Singh, R., “Development of rapid tooling using fused deposition modelling,” Addit. Manuf. Emerg. Mater., pp. 251–277, 2016, doi: 10.1007/978-3-319-91713-9_8.

Lopez, J. P., Girones, J., Mendez, J. A., Puig, J., and Pelach, M. A., “Recycling Ability of Biodegradable Matrices and Their Cellulose-Reinforced Composites in a Plastic Recycling Stream,” J. Polym. Environ., vol. 20 (1), pp. 96–103, 2011, doi: 10.1007/s10924-011-0333-1.

Rivas, L. F., Casarin, S. A., Nepomuceno, N. C., Alencar, M. I., Agnelli, J. A. M., De Medeiros, E. S., De Oliveira Wanderley Neto, A., De Oliveira, M. P., De Medeiros, A. M., and Ferreira Santos, A. S., “Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies,” Polimeros, vol. 27 (2), pp. 122–128, 2017, doi: 10.1590/0104-1428.2406.

Del Mar Castro López, M., Ares Pernas, A. I., Abad López, M. J., Latorre, A. L., López Vilariño, J. M., and González Rodríguez, M. V., “Assessing changes on poly(ethylene terephthalate) properties after recycling: Mechanical recycling in laboratory versus postconsumer recycled material,” Mater. Chem. Phys., vol. 147 (3), pp. 884–894, 2014, doi: 10.1016/j.matchemphys.2014.06.034.

Vidakis, N., Petousis, M., Tzounis, L., Grammatikos, S. A., Porfyrakis, E., Maniadi, A., and Mountakis, N., “Sustainable additive manufacturing: Mechanical response of high-density polyethylene over multiple recycling processes,” Materials (Basel)., vol. 6 (4), pp. 1–14, 2021, doi:

Niaounakis, M., “Definitions and Assessment of (Bio)degradation,” Biopolym. Reuse, Recycl. Dispos., pp. 77–94, 2013, doi: 10.1016/b978-1-4557-3145-9.00002-6.

Sodergard, A. and Stolt, M., “Properties of polylactic acid fiber based polymers and their correlation with composition,” Proc. 2007 Int. Conf. Adv. Fibers Polym. Mater. ICAFPM 2007, vol. 1, pp. 8–11, 2002.

Kopinke, F. D., Remmler, M., Mackenzie, K., Möder, M., and Wachsen, O., “Thermal decomposition of biodegradable polyesters - II. Poly(lactic acid),” Polym. Degrad. Stab., vol. 53 (3), pp. 329–342, 1996, doi: 10.1016/0141-3910(96)00102-4.

Briassoulis, D., “Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films,” Polym. Degrad. Stab., vol. 92 (6), pp. 1115–1132, 2007, doi: 10.1016/j.polymdegradstab.2007.01.024.

Badia, J. D., Gil-Castell, Ó., Teruel-Juanes, R., and Ribes-Greus, A., “Recycling of Polylactide,” Encycl. Renew. Sustain. Mater., pp. 282–295, 2019, doi: 10.1016/b978-0-12-803581-8.10569-7.

Badía, J. D., Strömberg, E., Ribes-Greus, A., and Karlsson, S., “Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide),” Eur. Polym. J., vol. 47 (7), pp. 1416–1428, 2011, doi: 10.1016/j.eurpolymj.2011.05.001.

Åkesson, D., Fazelinejad, S., Skrifvars, V. V., and Skrifvars, M., “Mechanical recycling of polylactic acid composites reinforced with wood fibres by multiple extrusion and hydrothermal ageing,” J. Reinf. Plast. Compos., vol. 35 (16), pp. 1248–1259, 2016, doi: 10.1177/0731684416647507.

Le Duigou, A., Pillin, I., Bourmaud, A., Davies, P., and Baley, C., “Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites,” Compos. Part A Appl. Sci. Manuf., vol. 39 (9), pp. 1471–1478, 2008, doi: 10.1016/j.compositesa.2008.05.008.

Chaitanya, S., Singh, I., and Song, J. Il, “Recyclability analysis of PLA/Sisal fiber biocomposites,” Compos. Part B Eng., vol. 173 (March), p. 106895, 2019, doi: 10.1016/j.compositesb.2019.05.106.

Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., and Auras, R., “Poly(lactic acid)—Mass production, processing, industrial applications, and end of life,” Adv. Drug Deliv. Rev., vol. 107 (October 2017), pp. 333–366, 2016.

Luo, Y., Lin, Z., and Guo, G., “Biodegradation Assessment of Poly ( Lactic Acid ) Filled with Functionalized Titania Nanoparticles ( PLA / TiO 2 ) under Compost Conditions,” Nanoscale Res. Lett., vol. 14 (56), pp. 1–10, 2019, [Online]. Available:

Yu, L., Liu, H., Xie, F., Chen, L., and Li, X., “Effect of Annealing and Orientation on Microstructures and Mechanical Properties of Polylactic Acid,” 2008, doi: 10.1002/pen.

Nagaraj, S. K., Shivanna, S., Subramani, N. K., and Siddaramaiah, H., “Revisiting Powder X-ray Diffraction Technique: A Powerful Tool to Characterize Polymers and their Composite Films,” Res. Rev. J. Mater. Sci., vol. 04 (04), pp. 1–5, 2016.

Hsieh, Y. T., Nozaki, S., Kido, M., Kamitani, K., Kojio, K., and Takahara, A., “Crystal polymorphism of polylactide and its composites by X-ray diffraction study,” Polym. J., vol. 52 (7), pp. 755–763, 2020, doi: 10.1038/s41428-020-0343-8.

Brüster, B., Addiego, F., Hassouna, F., Ruch, D., Raquez, J. M., and Dubois, P., “Thermo-mechanical degradation of plasticized poly(lactide) after multiple reprocessing to simulate recycling: Multi-scale analysis and underlying mechanisms,” Polym. Degrad. Stab., vol. 131, pp. 132–144, 2016.



  • There are currently no refbacks.

Copyright (c) 2021 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats