Characterization of Bacterial Nanocellulose - Graphite Nanoplatelets Composite Films

Bili Darnanto Susilo, Heru Suryanto, Aminnudin Aminnudin

Abstract


Bacterial cellulose  (BC) was synthesized from pineapple peel extract media with addition of fermentation agent bacteria Acetobacter xylinum. BC was disintegrated from the pellicle into bacterial nanocellulose (BNC) by using a high-pressure homogenizer (hph) machine, which has a three-dimensional woven nanofibrous network. The synthesis of composite films started when BNC, graphite nanoplatelets, and cetyltrimethylammonium bromide (CTAB) were homogenized using an ultrasonic homogenizer then baked on a glass mold at a temperature of 80 degrees Celcius for 14h. A scanning electron microscope (SEM) was used to analyze its morphology. X-Ray diffraction spectra were used to analyze the composite films structure. The functional groups of the composite films were analyzed using the FTIR spectrum. SEM micrograph shows that GNP was evenly distributed into BNC matrix after CTAB addition. GNPs are shown as flat and smooth flakes with sharp corners. Some peak corresponds O-H, C-H, C≡C, and CH3 stretching was identified by using FTIR spectroscopy at wavenumber 3379, 2893, 2135, and 1340 cm-1, respectively. XRD analysis shows that Crystalline Index (C.I) of BNC increases after 2.5 wt% addition of GNP. The presence of CTAB decreases C.I value of composite films. BNC/GNP composite films have the best mechanical properties with Young’s modulus about 77.01 ± 8.564.


Keywords


Bacterial nanocellulose, CTAB, FTIR, graphite nanoplatelet, morphology, XRD

Full Text:

PDF

References


M. P. Illa, M. Khandelwal, and C. S. Sharma, “Bacterial cellulose-derived carbon nanofibers as anode for lithium-ion batteries,” Emergent Mater., vol. 1, no. 3–4, pp. 105–120, 2018, doi: 10.1007/s42247-018-0012-2.

A. Tayeb, E. Amini, S. Ghasemi, and M. Tajvidi, “Cellulose Nanomaterials—Binding Properties and Applications: A Review,” Molecules, vol. 23, no. 10, p. 2684, Oct. 2018, doi: 10.3390/molecules23102684.

I. de A. A. Fernandes, A. C. Pedro, V. R. Ribeiro, D. G. Bortolini, M. S. C. Ozaki, G. M. Maciel, and C. W. I. Haminiuk, “Bacterial cellulose: From production optimization to new applications,” Int. J. Biol. Macromol., vol. 164, pp. 2598–2611, 2020, doi: 10.1016/j.ijbiomac.2020.07.255.

M. P. Illa, C. S. Sharma, and M. Khandelwal, “Catalytic graphitization of bacterial cellulose–derived carbon nanofibers for stable and enhanced anodic performance of lithium-ion batteries,” Mater. Today Chem., vol. 20, p. 100439, 2021, doi: 10.1016/j.mtchem.2021.100439.

M. Iguchi, S. Yamanaka, and A. Budhiono, “Bacterial cellulose - a masterpiece of nature’s arts,” J. Mater. Sci., vol. 35, no. 2, pp. 261–270, 2000, doi: 10.1023/A:1004775229149.

D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris, “Nanocelluloses: A new family of nature-based materials,” Angew. Chemie - Int. Ed., vol. 50, no. 24, pp. 5438–5466, 2011, doi: 10.1002/anie.201001273.

T. A. Agustin and A. Putra, “The Effect of Addition of Polyethylene Glycol (PEG) on Biodegradable Plastic Based on Bacterial Cellulosa from Coconut Water (Coconus Nucifera),” Int. J. Progress. Sci. Technol., vol. 17, no. 2, pp. 50–57, 2019, doi: 10.52155/ijpsat.v17.2.1398.

H. Suryanto, T. A. Sutrisno, U. Yanuhar, and R. Wulandari, “Morphology and structure of bacterial cellulose film after ionic liquid treatment,” J. Phys. Conf. Ser., vol. 1595, no. 1, p. 012028, Jul. 2020, doi: 10.1088/1742-6596/1595/1/012028.

J. Gutierrez, A. Tercjak, I. Algar, A. Retegi, and I. Mondragon, “Conductive properties of TiO 2/bacterial cellulose hybrid fibres,” J. Colloid Interface Sci., vol. 377, no. 1, pp. 88–93, 2012, doi: 10.1016/j.jcis.2012.03.075.

S. A. Sardjono, H. Suryanto, Aminnudin, and M. Muhajir, “Crystallinity and morphology of the bacterial nanocellulose membrane extracted from pineapple peel waste using high-pressure homogenizer,” AIP Conf. Proc., vol. 2120, 2019, doi: 10.1063/1.5115753.

J. Juntaro, M. Pommet, A. Mantalaris, M. Shaffer, and A. Bismarck, “Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites,” Compos. Interfaces, vol. 14, no. 7–9, pp. 753–762, 2007.

S. Dutta, J. Kim, Y. Ide, J. H. Kim, M. S. A. Hossain, Y. Bando, Y. Yamauchi, and K. C.-W. Wu, “3D network of cellulose-based energy storage devices and related emerging applications,” Mater. Horizons, vol. 4, no. 4, pp. 522–545, 2017.

R. Sabo, A. Yermakov, C. T. Law, and R. Elhajjar, “Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: A review,” J. Renew. Mater., vol. 4, no. 5, pp. 297–312, 2016.

R. Wulandari, H. F. Aritonang, and A. D. Wuntu, “Sintesis Dan Karakterisasi Nanografit,” Chem. Prog., vol. 10, no. 2, pp. 46–49, 2017, doi: 10.35799/cp.10.2.2017.27745.

H. F. Aritonang, R. Wulandari, and A. D. Wuntu, “Synthesis and Characterization of Bacterial Cellulose/Nano‐Graphite Nanocomposite Membranes,” Macromol. Symp., vol. 391, no. 1, p. 1900145, Jun. 2020, doi: 10.1002/masy.201900145.

Y. Li, Z. Sun, D. Liu, S. Lu, F. Li, G. Gao, M. Zhu, M. Li, Y. Zhang, H. Bu, Z. Jia, and S. Ding, “Bacterial Cellulose Composite Solid Polymer Electrolyte With High Tensile Strength and Lithium Dendrite Inhibition for Long Life Battery,” ENERGY Environ. Mater., p. eem2.12122, Oct. 2020, doi: 10.1002/eem2.12122.

R. Metz, C. Blanc, S. Dominguez, S. Tahir, R. Leparc, and M. Hassanzadeh, “Nonlinear field dependent conductivity dielectrics made of graphite nanoplatelets filled composites,” Mater. Lett., vol. 292, p. 129611, 2021.

E. Erbas Kiziltas, A. Kiziltas, K. Rhodes, N. W. Emanetoglu, M. Blumentritt, and D. J. Gardner, “Electrically conductive nano graphite-filled bacterial cellulose composites,” Carbohydr. Polym., vol. 136, pp. 1144–1151, Jan. 2016, doi: 10.1016/j.carbpol.2015.10.004.

Y. M. Shulga, A. V. Melezhik, E. N. Kabachkov, F. O. Milovich, N. V. Lyskov, A. V. Irzhak, N. N. Dremova, G. L. Gutsev, A. Michtchenko, A. G. Tkachev, and Y. Kumar, “Characterisation and electrical conductivity of polytetrafluoroethylene/graphite nanoplatelets composite films,” Appl. Phys. A Mater. Sci. Process., vol. 125, no. 7, pp. 1–8, 2019, doi:10.1007/s00339-019-2747-x.

X. Wei, X. zheng Jin, N. Zhang, X. dong Qi, J. hui Yang, Z. wan Zhou, and Y. Wang, “Constructing cellulose nanocrystal/graphene nanoplatelet networks in phase change materials toward intelligent thermal management,” Carbohydr. Polym., vol. 253, no. August 2020, p. 117290, 2021, doi: 10.1016/j.carbpol.2020.117290.

G. Li, X. Tian, X. Xu, C. Zhou, J. Wu, Q. Li, L. Zhang, F. Yang, and Y. Li, “Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers,” Compos. Sci. Technol., vol. 138, pp. 179–185, 2017, doi: 10.1016/j.compscitech.2016.12.001.

O. S. Yakovenko, L. Y. Matzui, L. L. Vovchenko, O. V. Lozitsky, O. I. Prokopov, O. A. Lazarenko, A. V. Zhuravkov, V. V. Oliynyk, V. L. Launets, S. V. Trukhanov, and A. V. Trukhanov, “Electrophysical properties of epoxy-based composites with graphite nanoplatelets and magnetically aligned magnetite,” Mol. Cryst. Liq. Cryst., vol. 661, no. 1, pp. 68–80, Jan. 2018, doi: 10.1080/15421406.2018.1460243.

B. Li and W.-H. Zhong, “Review on polymer/graphite nanoplatelet nanocomposites,” J. Mater. Sci., vol. 46, no. 17, pp. 5595–5614, Sep. 2011, doi: 10.1007/s10853-011-5572-y.

H. Suryanto, T. A. Sutrisno, M. Muhajir, N. Zakia, and U. Yanuhar, “Effect of peroxide treatment on the structure and transparency of bacterial cellulose film,” in MATEC Web of Conferences, 2018, vol. 204, p. 5015.

S. A. Sardjono, H. Suryanto, Aminnudin, and M. Muhajir, “Crystallinity and morphology of the bacterial nanocellulose membrane extracted from pineapple peel waste using high-pressure homogenizer,” in AIP Conference Proceedings, Jul. 2019, vol. 2120, p. 080015. doi: 10.1063/1.5115753.

E. Serag, A. El Nemr, and A. El-Maghraby, “Synthesis of highly effective novel graphene oxide-polyethylene glycol-polyvinyl alcohol nanocomposite hydrogel for copper removal,” J. Water Environ. Nanotechnol., vol. 2, no. 4, pp. 223–234, 2017.

L. Segal, J. J. Creely, A. E. Martin Jr, and C. M. Conrad, “An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer,” Text. Res. J., vol. 29, no. 10, pp. 786–794, 1959.

ASTM D638-14, “Standard Practice for Preparation of Metallographic Specimens,” ASTM Int., vol. 82, no. C, pp. 1–15, 2016, doi: 10.1520/D0638-14.1.

H. Suryanto, M. Muhajir, T. A. Sutrisno, U. Yanuhar, and R. D. Bintara, “Effect of Disintegration Process on the Properties of Bacterial Cellulose Foam,” Key Eng. Mater., vol. 851, pp. 86–91, Jul. 2020, doi: 10.4028/www.scientific.net/KEM.851.86.

T. Zhou, D. Chen, J. Jiu, T. T. Nge, T. Sugahara, S. Nagao, H. Koga, M. Nogi, K. Suganuma, X. Wang, X. Liu, P. Cheng, T. Wang, and D. Xiong, “Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes,” Express Polym. Lett., vol. 7, no. 9, pp. 756–766, 2013, doi: 10.3144/expresspolymlett.2013.73.

L. Zhang, J. Zhu, W. Zhou, J. Wang, and Y. Wang, “Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials,” Energy, vol. 39, no. 1, pp. 294–302, 2012, doi: 10.1016/j.energy.2012.01.011.

P. Rani, K. S. Kumar, A. D. Pathak, and C. S. Sharma, “Pyrolyzed pencil graphite coated cellulose paper as an interlayer: An effective approach for high-performance lithium-sulfur battery,” Appl. Surf. Sci., vol. 533, no. August, p. 147483, Dec. 2020, doi: 10.1016/j.apsusc.2020.147483.

F. Wang and L. T. Drzal, “The use of cellulose nanofibrils to enhance the mechanical properties of graphene nanoplatelets papers with high electrical conductivity,” Ind. Crops Prod., vol. 124, no. August, pp. 519–529, 2018, doi: 10.1016/j.indcrop.2018.08.019.




DOI: http://dx.doi.org/10.17977/um016v5i22021p145

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats