Effect of Current and Pulse-on Time on Material Removal Rate and Surface Roughness of Tungsten Carbide in Electric Discharge Machine Die-sinking

Mochammad Deny Riyanto, Andoko Andoko, Heru Suryanto

Abstract


The focus of manufacturing for tungsten carbide applications often demands a smooth surface quality as the result of the Electric Discharge Machine (EDM) die-sinking process, especially in the manufacture of die and mold with tungsten carbide material processed using a die-sinking EDM machine. The purpose of this study is to analyze the effect of electric current and pulse-on time on the Material Removal Rate (MRR) and surface roughness of tungsten carbide. Through the experimental method, the parameters varied, namely electric current 17 A, 20 A, 23 A, and pulse-on time 30 µs, 55 µs, and 80 µs. MRR was calculated through weight loss. Surface roughness was obtained from a surface roughness tester and a Scanning Electron Microscope for surface morphology. The results showed that the highest material removal rate was 1.509 mm3/min at 23 A and 30 µs, and the lowest material removal rate was 0.262 mm3/min at 17 A and 80 µs. The highest surface roughness value was 4.278 µm at 23 A and 80 µs. The lowest surface roughness value was 2.166 µm at 17 A and 30 µs. The tungsten carbide surface topography results are crater, globule, crack, and porous. The greater the current used, the higher the MRR value and surface roughness. Meanwhile, the greater the pulse-on time used, the MRR value decreases, and the surface roughness increases.


Keywords


Current, EDM, MRR, pulse-on time, roughness, SEM, tungsten carbide

Full Text:

PDF

References


A. A. Fikri, M. Romlie, and A. Aminnudin, “Factors Affecting the Surface Roughness in Sinking EDM Process,” J. Mech. Eng. Sci. Technol. JMEST, vol. 1, no. 1, Art. no. 1, Aug. 2017, doi: 10.17977/um016v1i12017p009.

K. S. Banker, A. D. Oza, and R. B. Dave, “Performance Capabilities of EDM machining using Aluminum, Brass and Copper for AISI 304L Material.,” vol. 2, no. 8, 2013.

W. Huang, H. Meng, Y. Gao, J. Wang, et al., “Metallic tungsten carbide nanoparticles as a near-infrared-driven photocatalyst,” J. Mater. Chem. A, vol. 7, no. 31, pp. 18538–18546, 2019, doi: 10.1039/C9TA03151K.

K. Liu, X. Li, and S. Y. Liang, “Nanometer-Scale Ductile Cutting of Tungsten Carbide,” J. Manuf. Process., vol. 6, no. 2, pp. 187–195, Jan. 2004, doi: 10.1016/S1526-6125(04)70073-0.

A. H. Khallaf, M. Bhlol, O. M. Dawood, I. M. Ghayad, and O. A. Elkady, “‘Effect of tungsten carbide (WC) on electrochemical corrosion behavior, hardness, and microstructure of CrFeCoNi high entropy alloy,’” J. Eng. Appl. Sci., vol. 69, no. 1, p. 43, May 2022, doi: 10.1186/s44147-022-00097-1.

G. Gaurav, A. Sharma, G. S. Dangayach, and M. L. Meena, “Assessment of jojoba as a pure and nano-fluid base oil in minimum quantity lubrication (MQL) hard-turning of Ti–6Al–4V: A step towards sustainable machining,” J. Clean. Prod., vol. 272, p. 122553, Nov. 2020, doi: 10.1016/j.jclepro.2020.122553.

G. D’Urso, G. Maccarini, and C. Ravasio, “Influence of electrode material in micro-EDM drilling of stainless steel and tungsten carbide,” Int. J. Adv. Manuf. Technol., vol. 85, no. 9, pp. 2013–2025, Aug. 2016, doi: 10.1007/s00170-015-7010-9.

T. Sultan, A. Kumar, and R. D. Gupta, “Material Removal Rate, Electrode Wear Rate, and Surface Roughness Evaluation in Die Sinking EDM with Hollow Tool through Response Surface Methodology,” Int. J. Manuf. Eng., vol. 2014, pp. 1–16, Sep. 2014, doi: 10.1155/2014/259129.

N. S. L. B. Izwan, Z. Feng, J. B. Patel, and W. N. Hung, “Prediction of Material Removal Rate in Die-sinking Electrical Discharge Machining,” Procedia Manuf., vol. 5, pp. 658–668, Jan. 2016, doi: 10.1016/j.promfg.2016.08.054.

A. K. Bodukuri, “Experimental Investigation and optimization of EDM process parameters on Aluminum metal matrix composite,” Mater. Today Proc., vol. 5, no. 11, pp. 24731–24740, Jan. 2018, doi: 10.1016/j.matpr.2018.10.271.

S. Chandramouli and K. Eswaraiah, “Experimental investigation of EDM process parameters in machining of 17-4 PH Steel using taguchi method,” Mater. Today Proc., vol. 5, no. 2, Part 1, pp. 5058–5067, Jan. 2018, doi: 10.1016/j.matpr.2017.12.084.

Y. R. A. Pradana, A. Ferara, A. Aminnudin, W. Wahono, and J. S.-C. Jang, “The Effect of Discharge Current and Pulse-On Time on Biocompatible Zr-based BMG Sinking-EDM,” Open Eng., vol. 10, no. 1, pp. 401–407, Jan. 2020, doi: 10.1515/eng-2020-0049.

D. Mishra and S. Rizvi, “ Influence of Edm Parameters on MRR, TWR and Surface Integrity of AISI 4340 ,” Int. J. Tech. Res. Appl., pp. 163–169, Mar. 2017.

B. Jabbaripour, M. H. Sadeghi, Sh. Faridvand, and M. R. Shabgard, “Investigating the Effects of Edm Parameters on Surface Integrity, MRR and TWR In Machining of Ti–6Al–4V,” Mach. Sci. Technol., vol. 16, no. 3, pp. 419–444, Jul. 2012, doi: 10.1080/10910344.2012.698971.

S. Kumari, S. Datta, M. Masanta, G. Nandi, and P. K. Pal, “Electro-Discharge Machining of Inconel 825 Super alloy: Effects of Tool Material and Dielectric Flushing,” Silicon, vol. 10, no. 5, pp. 2079–2099, Sep. 2018, doi: 10.1007/s12633-017-9728-5.

M. Zhang, Q. Zhang, L. Dou, Q. Liu, and C. Dong, “Comparisons of single pulse discharge crater geometries in EDM and EAM,” J. Manuf. Process., vol. 22, pp. 74–81, Apr. 2016, doi: 10.1016/j.jmapro.2016.01.013.

K. Salonitis, A. Stournaras, P. Stavropoulos, and G. Chryssolouris, “Thermal modeling of the material removal rate and surface roughness for die-sinking EDM,” Int. J. Adv. Manuf. Technol., vol. 40, no. 3–4, pp. 316–323, Jan. 2009, doi: 10.1007/s00170-007-1327-y.

S. Ahmad, R. N. Chendang, A. Supawi, M. A. Lajis, and M. H. K. Zaman, “Material removal rate and machining accuracy of electrical discharge machining (EDM) of Inconel 718 using copper electrode,” IOP Conf. Ser. Mater. Sci. Eng., vol. 607, no. 1, p. 012006, Aug. 2019, doi: 10.1088/1757-899X/607/1/012006.




DOI: http://dx.doi.org/10.17977/um016v7i12023p039

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats