Synthesis and Characterization of Nitrogen-Doped Activated Carbon for Lithium Battery Anode Applications

Prihanto Trihutomo, Poppy Puspitasari, Muhammad Bustomi Radja, Milzam Rahmat Busono

Abstract


Nitrogen-dopped activated carbon was synthesized to see its effect on the characterization of the nitrogen surface functional groups, crystal size, and morphology of the resulting sample. Synthesis of nitrogen-doped activated carbon was carried out by varying the addition of Urea as a nitrogen doping source. Activated carbon compared its characteristics with variations in the concentration of added Urea to activated carbon, at 1:3 and 1:5. The FTIR results obtained were the presence of functional groups indicating the presence of nitrogen bonds in each sample. The crystallinity results showed that the samples were classified as crystalline and nitrogen doping influenced the size of the crystallinity of each sample. The morphology of nitrogen-doped activated carbon shows differences in the grain size of nitrogen-doped activated carbon. Crystallinity and morphology have been shown to affect battery anode performance. The more crystalline of anode material, the electrochemical properties are better. The smaller the grain size of the sample morphology, the stability of the battery cycle is to be great.    


Keywords


Activated carbon, characterization, nitrogen concentration, nitrogen doping, surface

Full Text:

PDF

References


S. Zong, “Preparation of N-doped porous carbon materials and their supercapacitor performance Dissertation Submitted for the Degree of MTech : Engineering : Chemical Prepared by,” no. January, 2021.

J. Yan, C. E. Ren, K. Maleski, C. B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, and Y. Gogotsi, “Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance,” Adv. Funct. Mater., vol. 27, no. 30, pp. 1–10, 2017, doi: 10.1002/adfm.201701264.

A. D. Roberts, X. Li, and H. Zhang, “Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials,” Chem. Soc. Rev., vol. 43, no. 13, pp. 4341–4356, 2014, doi: 10.1039/c4cs00071d.

H. Susana and Astuti, “Pengaruh Konsentrasi LiOH terhadap Sifat Listrik Anoda Baterai Litium Berbasis Karbon Aktif Tempurung Kemiri,” J. Fis. Unand, vol. 5, no. 2, pp. 136–141, 2016.

J. Wang, W. Zhang, J. Li, B. Wang, C. Xu, and C. Lai, “In situ self-assembly assisted synthesis of N-doped mesoporous hierarchical carbon aerogels-wrapped Li 2 ZnTi 3 O 8 composite for high- rate lithium ion batteries,” J. Mater., vol. 7, no. 5, pp. 1083–1093, 2021, doi: 10.1016/j.jmat.2021.01.013.

A. H. Abdul, N. Ramli, A. N. Nordin, and M. F. Abd. Wahab, “Supercapacitor performance with activated carbon and graphene nanoplatelets composite electrodes, and insights from the equivalent circuit model,” Carbon Trends, vol. 5, p. 100101, 2021, doi: 10.1016/j.cartre.2021.100101.

M. Inagaki, M. Toyoda, Y. Soneda, and T. Morishita, “Nitrogen-doped carbon materials,” Carbon N. Y., vol. 132, pp. 104–140, 2018, doi: 10.1016/j.carbon.2018.02.024.

A.N.A. El-Hendawy, “Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions,” J. Anal. Appl. Pyrolysis, vol. 75, no. 2, pp. 159–166, 2006, doi: 10.1016/j.jaap.2005.05.004.

S. Shi and Y. Liu, “Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO2 adsorption,” Fuel, vol. 306, no. January, p. 121762, 2021, doi: 10.1016/j.fuel.2021.121762.

S. Timur, I. C. Kantarli, S. Onenc, and J. Yanik, “Characterization and application of activated carbon produced from oak cups pulp,” J. Anal. Appl. Pyrolysis, vol. 89, no. 1, pp. 129–136, 2010, doi: 10.1016/j.jaap.2010.07.002.

R. Mishra, P. R. Prasad, P. Panda, and S. Barman, “Highly Porous Activated N-Doped Carbon as an Ideal Electrode Material for Capacitive Energy Storage and Physisorption of H2, CO2, and CH4,” Energy and Fuels, vol. 35, no. 17, pp. 14177–14187, 2021, doi: 10.1021/acs.energyfuels.1c02051.

J. Withrow, Infrared Spectroscopy. New York: Research, 2016.

Y. F. Ferawati and R. F. Susanti, “Peran N-Doping terhadap Karakteristik Pori Karbon Aktif yang Dihasilkan dari Limbah Destilasi Akar Wangi,” Metalurgi, vol. 36, no. 2, pp. 59–68, 2021, doi: 10.14203/metalurgi.v36i2.595.

N. Khoirina, A. F. Nugraheni, A. A. Alfian, and W. D. P. Rengga, “Preparation and characterization of activated carbon derived from the bovine bone doped urea as an electrode material,” IOP Conf. Ser. Earth Environ. Sci., vol. 969, no. 1, 2022, doi: 10.1088/1755-1315/969/1/012040.

H. Marsh and F. Rodríguez-Reinoso, Activated Carbon. Elsevier Ltd. 2006.

S. Ahmed, A. Ahmed, and M. Rafat, “Nitrogen doped activated carbon from pea skin for high performance supercapacitor,” Mater. Res. Express, vol. 5, no. 4, 2018, doi: 10.1088/2053-1591/aabbe7.

Y. Y. García-Guel, E. M. Múzquiz-Ramos, J. C. Ríos-Hurtado, A. Moreno-Santos, S. E. Flores-Villaseñor, and G. B. Escalante-Ibarra, “Surface modification of activated carbon cloth with calcium silicate and hydroxyapatite: bioactive composite material,” Heliyon, vol. 8, no. December 2021, p. e11586, 2022, doi: 10.1016/j.heliyon.2022.e11586.

Q. Li, M. Yuan, Y. Wang, X. Gao, X. Li, M. Yao, H. He, Q. Tan, Z. Zhong, and F. Su, “Designing and preparing carbon anode materials modified with N and Fe-nanoparticle : Creating the interior electric field to improve their electrochemical performance,” Electrochim. Acta, vol. 383, p. 138367, 2021, doi: 10.1016/j.electacta.2021.138367.

R. Naraprawatphong, C. Chokradjaroen, and S. Thiangtham, “Nanoscale advanced carbons as an anode for lithium-ion battery,” Mater. Today Adv., vol. 16, p. 100290, 2022, doi: 10.1016/j.mtadv.2022.100290.

X. Xue, Y. Weng, Z. Jiang, S. Yang, and Y. Wu, “Journal of Analytical and Applied Pyrolysis Naturally nitrogen-doped porous carbon derived from waste crab shell as anode material for high performance sodium-ion battery,” J. Anal. Appl. Pyrolysis, vol. 157, no. January, p. 105215, 2021, doi: 10.1016/j.jaap.2021.105215.

W. Hana, H. Wanga, K. Xi, S. Chen, P. Yan, T. Deng, and W. Zhu, “Superior nitrogen-doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes,” Environ. Int., vol. 142, no. May, p. 105846, 2020, doi: 10.1016/j.envint.2020.105846.

N. Nurfitria, K. Febriyantiningrum, W. P. Utomo, Z. V. Nugraheni, D. D. Pangastuti, H. Maulida, and F. N. Ariyanti, “Pengaruh Konsentrasi Aktivator Kalium Hidroksida (KOH) pada Karbon Aktif dan Waktu Kontak Terhadap Daya Adsorpsi Logam Pb dalam Sampel Air Kawasan Mangrove Wonorejo, Surabaya,” Akta Kim. Indones., vol. 4, no. 1, p. 75, 2019, doi: 10.12962/j25493736.v4i1.5071.




DOI: http://dx.doi.org/10.17977/um016v7i12023p020

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats