Lap Joint on St.37 Steel Plate with Friction Welding Clamping Method

Widia Setiawan, Nugroho Santoso, Wiyadi Wiyadi, Muhammad Sulistiyo Aji, Rachmat Alamin, Achsan Tarmudi

Abstract


Friction stir (FW) welding is a relatively fresh method that was created and has been continually refined and adapted to industrial applications due to its benefits. This approach for solid-state joining entails connecting the components at a temperature below their melting point and then heating them up. Clamp joint applications are widely used using external heating and hitting with high strength, but the clamped joints with the FW method are rarely done. The research studied the characteristic of clamped joints at various plate thicknesses using the FW method. In this study, 30 specimens were used in the form of a St.37 low carbon steel plate with a size of 50 mm x 100 mm and a thickness of 3 mm, 5 mm, and 9 mm, and several holes were made with a diameter of 5 mm. The plate was connected by 2 clamps, and 4 clamps then the FW method was conducted in a milling machine. The results indicate that the plates were connected well. The highest hardness value was 256.4 VHN on the FW of 9 mm plate. The microstructure is dominated by ferrite and a little pearlite phase. The largest shear force is 66.54 kN obtained at 4 clamps with a plate thickness of 9 mm, and the lowest is 13.46 kN, obtained at 2 clamps with a plate thickness of 3 mm.


Keywords


Carbon steel, clamping, friction welding, microhardness, microstructure, shear force

Full Text:

PDF

References


P. Groche, S. Wohletz, M. Brenneis, C. Pabst, and F. Resch, “Joining by forming - A review on joint mechanisms, applications and future trends,” J. Mater. Process. Technol., vol. 214, no. 10, pp. 1972–1994, 2014, doi: 10.1016/j.jmatprotec.2013.12.022.

M. Soori, M. Asmael, and D. Solyall, “Recent Development in Friction Stir Welding Process: A Review,” SAE Int. J. Mater. Manuf., vol. 14, no. 1, pp. 63–80, 2020, doi: 10.4271/05-14-01-0006.

Z. Jiao, C. Song, T. Lin, and P. He, “Molecular dynamics simulation of the effect of surface roughness and pore on linear friction welding between Ni and Al,” Comput. Mater. Sci., vol. 50, no. 12, pp. 3385–3389, 2011, doi: 10.1016/j.commatsci.2011.06.033.

J. T. Xiong, J. L. Li, Y. N. Wei, F. S. Zhang, and W. D. Huang, “An analytical model of steady-state continuous drive friction welding,” Acta Mater., vol. 61, no. 5, pp. 1662–1675, 2013, doi: 10.1016/j.actamat.2012.11.042.

K. S. Mortensen, C. G. Jensen, L. C. Conrad, and F. Losee, “Mechanical properties and microstructures of inertia-friction-welded 416 stainless steel,” Weld. J. (Miami, Fla), vol. 80, no. 11, 2001.

R. Winiczenko and M. Kaczorowski, “Friction welding of ductile iron with stainless steel,” J. Mater. Process. Technol., vol. 213, no. 3, pp. 453–462, 2013, doi: 10.1016/j.jmatprotec.2012.10.008.

Tiwan, M. N. Ilman, and Kusmono, “Microstructure and mechanical properties of friction stir spot welded AA5052-H112 aluminum alloy,” Heliyon, vol. 7, no. 2, p. e06009, 2021, doi: 10.1016/j.heliyon.2021.e06009.

P. Rombaut, W. De Waele, and K. Faes, “Friction welding of steel to ceramic,” Int. J. Sustain. Constr. Des., vol. 2, no. 3, pp. 448–457, 2011, doi: 10.21825/scad.v2i3.20544.

L. Cui, X. Yang, D. Wang, J. Cao, and W. Xu, “Experimental study of friction taper plug welding for low alloy structure steel: Welding process, defects, microstructures and mechanical properties,” Mater. Des., vol. 62, pp. 271–281, 2014, doi: 10.1016/j.matdes.2014.05.026.

J. Luo, J. Xiang, D. Liu, F. Li, and K. Xue, “Radial friction welding interface between brass and high carbon steel,” J. Mater. Process. Technol., vol. 212, no. 2, pp. 385–392, 2012, doi: 10.1016/j.jmatprotec.2011.10.001.

R. Damodaram, S. Ganesh Sundara Raman, D. V. V. Satyanarayana, G. Madhusudhan Reddy, and K. Prasad Rao, “Hot tensile and stress rupture behavior of friction welded alloy 718 in different pre-and post-weld heat treatment conditions,” Mater. Sci. Eng. A, vol. 612, pp. 414–422, 2014, doi: 10.1016/j.msea.2014.06.076.

N. S. Kalsi and V. S. Sharma, “A statistical analysis of rotary friction welding of steel with varying carbon in workpieces,” Int. J. Adv. Manuf. Technol., vol. 57, no. 9–12, pp. 957–967, 2011, doi: 10.1007/s00170-011-3361-z.

F. Jin, J. Li, P. Liu, X. Nan, X. Li, J. Xiong, and F. Zhang, “Friction coefficient model and joint formation in rotary friction welding,” J. Manuf. Process., vol. 46, no. September, pp. 286–297, 2019, doi: 10.1016/j.jmapro.2019.09.008.

T. Schenk, M. Doig, G. Esser, and I. M. Richardson, “Influence of clamping support distance on distortion of welded T joints,” Sci. Technol. Weld. Join., vol. 15, no. 7, pp. 575–582, Oct. 2010, doi: 10.1179/136217110X12731414739835.

W. Liang and D. Deng, “Influences of heat input, welding sequence and external restraint on twisting distortion in an asymmetrical curved stiffened panel,” Adv. Eng. Softw., vol. 115, pp. 439–451, Jan. 2018, doi: 10.1016/j.advengsoft.2017.11.002.

T. Schenk, I. M. Richardson, M. Kraska, and S. Ohnimus, “A study on the influence of clamping on welding distortion,” Comput. Mater. Sci., vol. 45, no. 4, pp. 999–1005, Jun. 2009, doi: 10.1016/j.commatsci.2009.01.004.

M. Seyyedian Choobi, M. Haghpanahi, and M. Sedighi, “Investigation of the effect of clamping on residual stresses and distortions in butt-welded plates,” Sci. Iran., vol. 17, no. 5 B, pp. 387–394, 2010.

A. Schober, “Eine Methode zur Wärmequellenkalibrierung in der Schweißstruktursimulation.” 2014.

U. Das and V. Toppo, “Effect of Tool Rotational Speed on Temperature and Impact Strength of Friction Stir Welded Joint of Two Dissimilar Aluminum Alloys,” Mater. Today Proc., vol. 5, no. 2, pp. 6170–6175, 2018, doi: 10.1016/j.matpr.2017.12.223.

S. Choudhury, T. Medhi, D. Sethi, S. Kumar, B. S. Roy, and S. C. Saha, “Temperature distribution and residual stress in Friction Stir Welding process,” Mater. Today Proc., vol. 26, pp. 2296–2301, 2020, doi: 10.1016/j.matpr.2020.02.496.

B. Meyghani, M. Awang, C. S. Wu, and S. Emamian, “Temperature Distribution Investigation During Friction Stir Welding (FSW) Using Smoothed-Particle Hydrodynamics (SPH),” 2020, pp. 749–761. doi: 10.1007/978-981-15-5753-8_70.

N. Shete and S. U. Deokar, “A Review Paper on Rotary Friction Welding,” Int. Conf. Ideas, vol. 5, no. 6, pp. 1557–1560, 2017.

S. Absar, B. J. Ruszkiewicz, J. D. Skovron, L. Mears, T. Abke, X. Zhao, and H. Choi, “Temperature measurement in friction element welding process with micro thin film thermocouples,” Procedia Manuf., vol. 26, pp. 485–494, 2018, doi: 10.1016/j.promfg.2018.07.057.

M. C. Zulu and P. M. Mashinini, “The influence of rotational speed and pressure on the properties of rotary friction welded titanium alloy (Ti-6Al-4V),” 11th South African Conf. Comput. Appl. Mech. SACAM 2018, pp. 103–111, 2018.

G. İpekoğlu, T. Küçükömero, S. M. Aktarer, D. M. Sekban, and G. Çam, “Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints,” Mater. Res. Express, vol. 6, no. 4, p. 046537, Jan. 2019, doi: 10.1088/2053-1591/aafb9f.

D. Puspitasari, P. Puspitasari, M. R. G. Firmansyah, and S. Solichin, “The Effect of Rotational Speed, Friction Duration, and Pressure on Tensile Strength of AISI 6061 Welding Joints,” J. Mech. Eng. Sci. Technol., vol. 2, no. 1, pp. 38–42, 2018, doi: 10.17977/um016v2i12018p038.

M. Jafarzadegan, A. H. Feng, A. Abdollah-zadeh, T. Saeid, J. Shen, and H. Assadi, “Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel,” Mater. Charact., vol. 74, pp. 28–41, Dec. 2012, doi: 10.1016/j.matchar.2012.09.004.

M. Jafarzadegan, A. Abdollah-zadeh, A. H. Feng, T. Saeid, J. Shen, and H. Assadi, “Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel,” J. Mater. Sci. Technol., vol. 29, no. 4, pp. 367–372, Apr. 2013, doi: 10.1016/j.jmst.2013.02.008.

Y. yohanes and M. Meipen, “Effect of Rotational Speed on Hardness Value and Area of Vertical Bar-Plate Rotary Friction Weld Joint,” J. Ocean. Mech. Aerosp. -science Eng., vol. 66, no. 3, pp. 77–81, Nov. 2022, doi: 10.36842/jomase.v66i3.327.

P. Zolghadr, M. Akbari, and P. Asadi, “Formation of thermo-mechanically affected zone in friction stir welding,” Mater. Res. Express, vol. 6, no. 8, p. 086558, May 2019, doi: 10.1088/2053-1591/ab1d25.

C. A. Della Rovere, C. R. Ribeiro, R. Silva, N. G. Alcântara, and S. E. Kuri, “Local mechanical properties of radial friction welded supermartensitic stainless steel pipes,” Mater. Des., vol. 56, pp. 423–427, 2014, doi: 10.1016/j.matdes.2013.11.020.

R. Palanivel, R. F. Laubscher, I. Dinaharan, and D. G. Hattingh, “Microstructure and mechanical characterization of continuous drive friction welded grade 2 seamless titanium tubes at different rotational speeds,” Int. J. Press. Vessel. Pip., vol. 154, pp. 17–28, Jul. 2017, doi: 10.1016/j.ijpvp.2017.06.005.

J.-W. Choi, W. Li, K. Ushioda, M. Yamamoto, and H. Fujii, “Microstructure evolution and hardness distribution of linear friction welded AA5052-H34 joint and AA5083-O joint,” J. Mater. Res. Technol., vol. 17, pp. 2419–2430, Mar. 2022, doi: 10.1016/j.jmrt.2022.02.003.

Y. Lu, X. Zhang, H. Wang, C. Kan, F. Zhang, P. Dai, and H. Wang, “Investigation of microstructure, texture, and mechanical properties of FeCoNiCrMn high entropy alloy during drive friction welding,” Mater. Charact., vol. 189, p. 111959, Jul. 2022, doi: 10.1016/j.matchar.2022.111959.

C. A. Della Rovere, C. R. Ribeiro, R. Silva, L. F. S. Baroni, N. G. Alcântara, and S. E. Kuri, “Microstructural and mechanical characterization of radial friction welded supermartensitic stainless steel joints,” Mater. Sci. Eng. A, vol. 586, pp. 86–92, 2013, doi: 10.1016/j.msea.2013.08.014.

M. N. Ilman, A. Widodo, and N. A. Triwibowo, “Metallurgical, Mechanical and Corrosion Characteristics of Vibration Assisted Gas Metal Arc Aa6061-T6 Welded Joints,” SSRN Electron. J., 2022, doi: 10.2139/ssrn.4122101.

H. T. M. Nu, N. H. Loc, and L. P. Minh, “Influence of the rotary friction welding parameters on the microhardness and joint strength of Ti6Al4V alloys,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 235, no. 5, pp. 795–805, Apr. 2021, doi: 10.1177/0954405420972549.

B. Cheniti, D. Miroud, R. Badji, P. Hvizdoš, M. Fides, T. Csanádi, B. Belkessa, and M. Tata, “Microstructure and mechanical behavior of dissimilar AISI 304L/WC-Co cermet rotary friction welds,” Mater. Sci. Eng. A, vol. 758, pp. 36–46, Jun. 2019, doi: 10.1016/j.msea.2019.04.081.

W. Setiawan, N. Santoso, and S. Surojo, “New Design of Aluminum 6061 Welding Joining Using Friction Stir Welding Method,” J. Mech. Eng. Sci. Technol., vol. 4, no. 2, pp. 135–143, 2020, doi: 10.17977/um016v4i22020p135.

L. Chen, Y. Zhang, X. Xue, B. Wang, J. Yang, Z. Zhang, N. Tyrer, and G. C. Barber, “Investigation on shearing strength of resistance spot-welded joints of dissimilar steel plates with varying welding current and time,” J. Mater. Res. Technol., vol. 16, pp. 1021–1028, Jan. 2022, doi: 10.1016/j.jmrt.2021.12.079.

Z. Wu, G. Zhang, B. Wang, and K. Shih, “Experimental Investigation on Solid State Resistance Spot Welding,” in Volume 2: Advanced Manufacturing, American Society of Mechanical Engineers, Nov. 2017. doi: 10.1115/IMECE2017-72581.




DOI: http://dx.doi.org/10.17977/um016v7i12023p047

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats