Analysis of Fire and Smoke Spread in Ki Hajar Dewantara Auditorium, State University of Jakarta, Using Fire Dynamics Simulator

Ariq Harits Arrizq, Pratomo Setyadi

Abstract


Fire behavior and smoke spread are influenced by various factors, including the amount and condition of combustible material, ventilation openings, and ceiling height. A high amount of combustible material in the auditorium poses a significant fire hazard, hence, efforts need to be made to minimize the risk. One approach is to use Computational Fluid Dynamic software, such as Fire Dynamics Simulator (FDS), to model fire combustion. In this research, it provides an overview of the heat release rate (HRR) of fires that occur as well as the effect of differences in ceiling height and the effect of ventilation on fire spread. This research employed Polyurethane foam, commonly used for auditorium seats, as the sample material. Furthermore, it modeled two fire points, one on the 9th floor and the other on the 10th floor, in the middle of seat rows. The development of fire in the modeling was described by the results of visualization, HRR, burning rate, and temperature rise. These results provided insight into the speed at which fire and smoke spread. The starting point on the 9th floor had the highest flame spread rate due to the ceiling jet phenomenon, where a high amount of combustible material caused the ceiling temperature to increase, producing a heat flux that could burn surrounding seats. In both scenarios, the smoke spread rapidly toward the ventilation openings. However, it was denser on the 9th floor as the starting point was farther from the ventilation openings, and the smoke on the 10th floor was less dense.


Keywords


Auditorium, ceiling, FDS, HRR, polyurethane foam, temperature, ventilation

Full Text:

PDF

References


Kementerian PU, “Kepmen PU No. 11/KPTS/2000 tentang ketentuan teknis manajemen penanggulangan kebakaran di perkotaan”. Kementerian PU RI, 2000.

C. M. Annur, “Ragam objek kebakaran di DKI Jakarta 2020,” DataBoks.com, 2022. https://databoks.katadata.co.id/datapublish/2022/02/07/perumahan-objek-kebakaran-paling-sering-terjadi-di-dki-jakarta-selama-2020 (accessed Dec. 17, 2022).

Y. Mulyono, “Kebakaran gedung RRI Jember berasal dari ruang auditorium,” DetikJatim.com, 2022. https://www.detik.com/jatim/berita/d-5980921/kebakaran-gedung-rri-jember-berasal-dari-ruang-auditorium (accessed Dec. 17, 2022).

A. K. Ose, “Auditorium Undana Kupang terbakar,” KupangTerkini.com, 2021. https://kupangterkini.com/2021/10/04/auditorium-undana-kupang-terbakar/ (accessed Dec. 17, 2022).

Kompas, “Auditorium PPOP Ragunan terbakar, diduga gara-gara putung rokok,” Kompas.com, 2019. https://megapolitan.kompas.com/read/2019/05/21/11393931/auditorium-ppop-ragunan-terbakar-diduga-gara-gara-puntung-rokok (accessed Dec. 17, 2022).

L. Valasek and J. Glasa, “On realization of cinema hall fire simulation using fire dynamics simulator,” Computing and Informatics, vol. 36, pp. 971–1000, 2017, doi: 10.4149/cai.

Z. Huang, Y. Meng, R. Yang, Y. Gao, Z. Yinghua, and S. Wang, “Numerical simulation of a cinema fire based on FDS,” International Journal of Simulation and Process Modelling, vol. 13, no. 3, p. 200, 2018, doi: 10.1504/IJSPM.2018.093093.

P. Setyadi and Y. F. Nanda, “Karakteristik penyebaran api ketika terjadi kebakaran berbasis metode FDS (Fire Dynamics Simulator) pada parkiran sepeda motor kampus A Universitas Negeri Jakarta,” Konversi Energi dan Manufaktur UNJ, vol. 2, pp. 89–98, 2017.

R. S. Hidayah, “Pengaruh tata letak terhadap perambatan nyala api berbasis metode FDS (Fire Dynamics Simulator) pada parkiran sepeda motor kampus A Universitas Negeri Jakarta,” B.Ed. thesis, Universitas Negeri Jakarta, Jakarta, 2016.

K. B. McGrattan and G. P. Forney, “Fire dynamics simulator (version 4),” Gaithersburg, MD, 2004. doi: 10.6028/NIST.SP.1019.

G. P. Forney, Smokeview, a tool for visualizing fire dynamics simulation data volume I: User’s Guide. USA: National Institute of Standards and Technology, 2016.

A. Yusra, I. Haryanto, and Jamari, “Analisa kontak elastis antar hemispheres menggunakan metode elemen hingga,” ROTASI, vol. 10, no. 1, pp. 1–5, 2008.

J. Park and J. Kwark, “Experimental study on fire sources for full-scale fire testing of simple sprinkler systems installed in multiplexes,” Fire, vol. 4, no. 1, pp. 1–16, Mar. 2021, doi: 10.3390/fire4010008.

C. Albers, “Air mass/density,” Nasa Official (EarthData), 2022.

V. Babrauskas, Ignition Handbook. USA: Fire Science Publishers, 2003.

John. Krasny, W. J. (William J. Parker, and Vytenis. Babrauskas, Fire behavior of upholstered furniture and mattresses. New York: Noyes Publications, 2001.

D. Drysdale, An Introduction to Fire Dynamics. Chichester: John Wiley & Sons, Ltd, 2011.

ISO/TS 16733:2006 - Fire Safety Engineering — Selection of Design Fire Scenarios and Design Fires. ISO/TS 16733:2006, 2006.

P. McKeen and Z. Liao, “A three-layer macro-scale model for simulating the combustion of PPUF in CFD,” Build Simul, vol. 9, no. 5, pp. 583–596, Oct. 2016, doi: 10.1007/s12273-016-0287-2.

M. J. Hurley, SFPE Handbook of Fire Protection Engineering, Fifth Edition. USA: Springer, 2015.

M. Tanubrata and H. Wiryopranoto, “Penjalaran kebakaran pada suatu konstruksi bangunan gedung akibat sumber panas,” Jurnal Teknik Sipil, vol. 12, no. 1, pp. 14–43, 2016.

W. Zhao, R. Zong, B. Yao, J. Gao, and G. Liao, “Analysis of influencing factors on flashover in the long-narrow confined space,” Procedia Eng, vol. 62, pp. 250–257, 2013.

N. F. M. O. Davie County, “Stages of fire growth,” 2018, Accessed: Apr. 17, 2023. [Online]. Available: https://www.daviecountync.gov/883/Davie-County-Fire-Marshals-Office-SOGs

B. Karlsson and J. G. Quintiere, Enclosure fire dynamics. CRC Press, 2000.

K. Himoto and K. Suzuki, “Computational framework for assessing the fire resilience of buildings using the multi-layer zone model,” Reliab Eng Syst Saf, vol. 216, p. 108023, Dec. 2021, doi: 10.1016/j.ress.2021.108023.

C. Hopkin and M. Spearpoint, “A Review of design values adopted for heat release rate per unit area,” Fire Technol, vol. 55, no. 5, pp. 1599–1618, Sep. 2019.

A. F. Baguian, S. K. Ouiminga, C. Longuet, A.S. C. Bretelle et al., “Influence of density on foam collapse under burning,” Polymers (Basel), vol. 13, no. 1, p. 13, Dec. 2020, doi: 10.3390/polym13010013.




DOI: http://dx.doi.org/10.17977/um016v7i12023p076

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats