The Effect of Adding Aluminium on the Performance of ZnO NRs/PANi in Their Application as Photoelectrochemical Water Splitting

Eprilia Trikusuma Sari, Nandang Mufti, Anissa Chairani Alfin Nadhira, Hari Wisodo, Markus Diantoro

Abstract


Photoelectrochemical (PEC) is a new renewable energy technology that converts H2O into hydrogen and oxygen gas with the help of sunlight. A photoelectrochemical cell device consists of three main components, one of which is the photoanode. One of the materials that can be used as a photoanode is ZnO which has good electrical properties and is non-toxic. Nanorods-structured ZnO has the advantage of being able to increase light absorption due to its high surface area. However, the resulting performance is still quite low. So it is necessary to make modifications to the photoanode, one of which is by adding aluminium material to ZnO NRs, which has the potential to increase the conductivity of PEC in the production of H2 and O2 in H2O. To overcome the loss of samples during testing, the thin film will be coated with conductive polymers such as polyaniline (PANi), which has high conductivity, can increase photoactive ability, and has good corrosion resistance. In this study, the performance of ZnO NRs/PANi against AZO NRs/PANi will be studied by adding aluminium. The ZnO nanorods were synthesized by Hydrothermal method, Aluminium was deposited on ZnO NRs by DC Magnetron Sputtering method, and PANi was synthesized by polymerization method. From the XRD characterization results, it can be concluded that the addition of aluminium to ZnO NRs/PANi causes an increase in crystallinity and peak shift. SEM characterization shows that the addition of Al to ZnO NRs/PANi causes the porosity value to increase. In addition, UV-Vis characterization showed that the addition of Al material to the ZnO NRs/PANi thin film resulted in a wider range of absorbance of the light spectrum. Then, Cyclic Voltammetry test shows that the addition of aluminium increases the efficiency of the photoelectrochemical.

Keywords


AZO NRs, PANi, photoelectrochemical, water splitting.

Full Text:

PDF

References


C. Acar and I. Dincer, “Energy and exergy analyses of a novel photoelectrochemical hydrogen production system,” Int. J. Hydrog. Energy, vol. 42, no. 52, pp. 30550–30558, Dec. 2017, doi: 10.1016/j.ijhydene.2017.10.008.

A. Grimm, W. A. de Jong, and G. J. Kramer, “Renewable hydrogen production: A techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis,” Int. J. Hydrog. Energy, vol. 45, no. 43, pp. 22545–22555, Sep. 2020, doi: 10.1016/j.ijhydene.2020.06.092.

W. Yang, R. R. Prabhakar, J. Tan, S. D. Tilley, and J. Moon, “Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting,” Chem. Soc. Rev., vol. 48, no. 19, pp. 4979–5015, Sep. 2019, doi: 10.1039/C8CS00997J.

A. Thakur, D. Ghosh, P. Devi, K.-H. Kim, and P. Kumar, “Current progress and challenges in photoelectrode materials for the production of hydrogen,” Chem. Eng. J., vol. 397, p. 125415, Oct. 2020, doi: 10.1016/j.cej.2020.125415.

S. F. Ahmed, M. Mofijur, S. Nuzhat, N. Rafa, and A. Musharrat, “Sustainable hydrogen production: Technological advancements and economic analysis,” Int. J. Hydrog. Energy, vol. 47, no. 88, pp. 37227–37255, Oct. 2022, doi: 10.1016/j.ijhydene.2021.12.029.

J. Hu, S. Zhao, X. Zhao, and Z. Chen, “Strategies of Anode Materials Design towards Improved Photoelectrochemical Water Splitting Efficiency,” Coatings, vol. 9, no. 5, Art. no. 5, May 2019, doi: 10.3390/coatings9050309.

T. A. Dontsova, S. V. Nahirniak, and I. M. Astrelin, “Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose,” J. Nanomater., vol. 2019, p. e5942194, Apr. 2019, doi: 10.1155/2019/5942194.

M. A. Borysiewicz, “ZnO as a Functional Material, a Review,” Crystals, vol. 9, no. 10, Art. no. 10, Oct. 2019, doi: 10.3390/cryst9100505.

M. Sufyan, U. Mehmood, Y. Qayyum Gill, R. Nazar, and A. Ul Haq Khan, “Hydrothermally synthesize zinc oxide (ZnO) nanorods as an effective photoanode material for third-generation Dye-sensitized solar cells (DSSCs),” Mater. Lett., vol. 297, p. 130017, Aug. 2021, doi: 10.1016/j.matlet.2021.130017.

M. Singh, D. Vadher, V. Dixit, and C. Jariwala, “Synthesis, optimization and characterization of zinc oxide nanoparticles prepared by sol–gel technique,” Mater. Today Proc., vol. 48, pp. 690–692, 2022, doi: 10.1016/j.matpr.2021.08.145.

N. Mufti, M. Tommy Hasan Abadi, A. Yasrina, Sunaryono, and Yudyanto, “Photoelectrochemical Performance of ZnO Nanorods Grown on Stainless Steel Substrate,” IOP Conf. Ser. Mater. Sci. Eng., vol. 515, p. 012023, Apr. 2019, doi: 10.1088/1757-899X/515/1/012023.

C. Chen, H. Bai, Z. Da, M. Li, X. Yan, and J. Jiang, “Hydrothermal synthesis of Fe2O3/ZnO heterojunction photoanode for photoelectrochemical water splitting,” Funct. Mater. Lett., vol. 08, no. 05, p. 1550058, Oct. 2015, doi: 10.1142/S1793604715500587.

H. J. Tan, Z. Zainal, Z. A. Talib, H. N. Lim, and S. Shafie, “Synthesis of high quality hydrothermally grown ZnO nanorods for photoelectrochemical cell electrode,” Ceram. Int., vol. 47, no. 10, pp. 14194–14207, May 2021, doi: 10.1016/j.ceramint.2021.02.005.

W. Zhang, W. Wang, H. Shi, Y. Liang, J. Fu, and M. Zhu, “Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable Au nanoparticles,” Sol. Energy Mater. Sol. Cells, vol. 180, pp. 25–33, Jun. 2018, doi: 10.1016/j.solmat.2018.02.020.

M. T. H. Abadi, E. K. Maula, Sunaryono, S. Zulaikah, H. Setiyanto, and N. Mufti, “Fe3O4/ZnO bilayer for photoelectrochemical properties enhancement of current efficiency,” AIP Conf. Proc., vol. 2251, no. 1, p. 040019, Aug. 2020, doi: 10.1063/5.0015839.

G. O. Rabell, M. R. Alfaro Cruz, and I. Juárez-Ramírez, “Photoelectrochemical (PEC) analysis of ZnO/Al photoelectrodes and its photocatalytic activity for hydrogen production,” Int. J. Hydrog. Energy, vol. 47, no. 12, pp. 7770–7782, Feb. 2022, doi: 10.1016/j.ijhydene.2021.12.107.

H. Aydın, F. Yakuphanoglu, and C. Aydın, “Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties,” J. Alloys Compd., vol. 773, pp. 802–811, Jan. 2019, doi: 10.1016/j.jallcom.2018.09.327.

S. Shet, K.-S. Ahn, T. Deutsch, H. Wang, N. Ravindra, and Y. Yan, “Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting,” J. Mater. Res., vol. 25, no. 1, pp. 69–75, Jan. 2010, doi: 10.1557/JMR.2010.0017.

S. Zhong, M. Morales-Masis, M. Mews, L. Korte, Q. Jeangros, and W. Wu, “Exploring co-sputtering of ZnO:Al and SiO2 for efficient electron-selective contacts on silicon solar cells,” Sol. Energy Mater. Sol. Cells, vol. 194, pp. 67–73, Jun. 2019, doi: 10.1016/j.solmat.2019.02.005.

G. De Alvarenga, B. M. Hryniewicz, I. Jasper, R. J. Silva, V. Klobukoski, and F. S. Costa, “Recent trends of micro and nanostructured conducting polymers in health and environmental applications,” J. Electroanal. Chem., vol. 879, p. 114754, Dec. 2020, doi: 10.1016/j.jelechem.2020.114754.

R. M. Abdelfattah, M. Shaban, F. Mohamed, A. A. M. El-Reedy, and H. M. Abd El-Salam, “A new Synthetic Polymers Based on Polyaniline for Dual-Functional Applications: Photoelectrochemical Water Splitting and Antibacterial Activities,” ACS Omega, vol. 6, no. 32, pp. 20779–20789, Aug. 2021, doi: 10.1021/acsomega.1c01802.

M. Kandasamy, A. Seetharaman, B. Chakraborty, I. Manohara Babu, J. J. William, and G. Muralidharan, “Experimental and Theoretical Investigation of the Energy-Storage Behavior of a Polyaniline-Linked Reduced-Graphene-Oxide– Sn O 2 Ternary Nanohybrid Electrode,” Phys. Rev. Appl., vol. 14, no. 2, p. 024067, Aug. 2020, doi: 10.1103/PhysRevApplied.14.024067.

S. Sharma, S. Singh, and N. Khare, “Enhanced photosensitization of zinc oxide nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting,” Int. J. Hydrog. Energy, vol. 41, no. 46, pp. 21088–21098, Dec. 2016, doi: 10.1016/j.ijhydene.2016.08.131.

T. Zou, C. Wang, R. Tan, W. Song, and Y. Cheng, “Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light,” J. Hazard. Mater., vol. 338, pp. 276–286, Sep. 2017, doi: 10.1016/j.jhazmat.2017.05.042.

F. Mouzaia, D. Djouadi, A. Chelouche, L. Hammiche, and T. Touam, “Particularities of pure and Al-doped ZnO nanostructures aerogels elaborated in supercritical isopropanol,” Arab J. Basic Appl. Sci., vol. 27, no. 1, pp. 423–430, Jan. 2020, doi: 10.1080/25765299.2020.1833484.

D. Zhang, W. Yu, L. Zhang, and X. Hao, “Progress in the Synthesis and Application of Transparent Conducting Film of AZO (ZnO:Al),” Materials, vol. 16, no. 16, Art. no. 16, Jan. 2023, doi: 10.3390/ma16165537.

A. B. Rosli, S. S. Shariffudin, Z. Awang, and S. H. Herman, “AZO nanorods thin films by sputtering method,” presented at the 8th International Conference on Nanoscience And Nanotechnology 2017 (Nano-Scitech 2017), Selangor, Malaysia, 2018, p. 020003. doi: 10.1063/1.5036849.

A. Yildiz, H. Cansizoglu, M. Turkoz, R. Abdulrahman, A. Al-Hilo, and T. Karabacak, “Glancing angle deposited Al-doped ZnO nanostructures with different structural and optical properties,” Thin Solid Films, vol. 589, pp. 764–769, Aug. 2015, doi: 10.1016/j.tsf.2015.06.058.

M.-H. Hong, S.-Y. Jung, T.-J. Ha, W.-S. Seo, Y. S. Lim, and S. Shin, “Thermoelectric properties of mesoporous TiO 2 thin films through annealing temperature and ratio of surfactant,” Surf. Coat. Technol., vol. 231, pp. 370–373, Sep. 2013, doi: 10.1016/j.surfcoat.2012.07.035.

X. Sun, W. Luo, L. Chen, L. Zheng, C. Bao, and P. Sun, “Synthesis of porous Al doped ZnO nanosheets with high adsorption and photodecolorizative activity and the key role of Al doping for methyl orange removal,” RSC Adv., vol. 6, no. 3, pp. 2241–2251, 2016, doi: 10.1039/C5RA21954J.

D. Q. J. C. Augusto, D. A. F. J. Batista, D. M. N. J. Quinzinho, I. O. Nascimento, D. S. I. Alves, and D. O. Q. M. Gerlania, “Structural and optical properties of Al-doped ZnO thin films produced by magnetron sputtering,” Process. Appl. Ceram., vol. 14, no. 2, pp. 119–127, 2020.

X. Chong, L. Li, X. Yan, D. Hu, H. Li, and Y. Wang, “Synthesis, characterization and room temperature photoluminescence properties of Al doped ZnO nanorods,” Phys. E Low-Dimens. Syst. Nanostructures, vol. 44, no. 7–8, pp. 1399–1405, Apr. 2012, doi: 10.1016/j.physe.2012.03.001.

A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” J. Electroanal. Chem., vol. 763, pp. 149–154, Feb. 2016, doi: 10.1016/j.jelechem.2015.12.037.

S. Kim, S. Lee, J. Kim, J. Kim, D. Y. Kim, and S.-O. Kim, “Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method,” Electron. Mater. Lett., vol. 9, Jul. 2013, doi: 10.1007/s13391-013-0048-7.

T. P. Rao, M. C. S. Kumar, S. A. Angayarkanni, and M. Ashok, “Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis,” J. Alloys Compd., vol. 485, no. 1–2, pp. 413–417, Oct. 2009, doi: 10.1016/j.jallcom.2009.05.116.

C. Abed, C. Bouzidi, H. Elhouichet, B. Gelloz, and M. Ferid, “Mg doping induced high structural quality of sol–gel ZnO nanocrystals: Application in photocatalysis,” Appl. Surf. Sci., vol. 349, pp. 855–863, Sep. 2015, doi: 10.1016/j.apsusc.2015.05.078.

K. Gherab, Y. Al-Douri, C. H. Voon, U. Hashim, M. Ameri, and A. Bouhemadou, “Aluminium nanoparticles size effect on the optical and structural properties of ZnO nanostructures synthesized by spin-coating technique,” Results Phys., vol. 7, pp. 1190–1197, 2017, doi: 10.1016/j.rinp.2017.03.013.

J. Jia, A. Takasaki, N. Oka, and Y. Shigesato, “Experimental observation on the Fermi level shift in polycrystalline Al-doped ZnO films,” J. Appl. Phys., vol. 112, no. 1, p. 013718, Jul. 2012, doi: 10.1063/1.4733969.

R. H. Coridan, A. C. Nielander, S. A. Francis, M. T. McDowell, V. Dix, and S. M. Chatman, “Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation,” Energy Environ. Sci., vol. 8, no. 10, pp. 2886–2901, 2015, doi: 10.1039/C5EE00777A.

M. T. H. Abadi, N. A. Sofa, S. Zulaikah, and N. Mufti, “Influence of Au Sputtered in ZnO/Au/PANI Heterostructures Film for Photoelectrochemical Cells,” Mater. Sci. Forum, vol. 1028, pp. 117–126, 2021, doi: 10.4028/www.scientific.net/MSF.1028.117.




DOI: http://dx.doi.org/10.17977/um016v7i22023p202

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats