The Effect of Adding Aluminium on the Performance of ZnO NRs/PANi in Their Application as Photoelectrochemical Water Splitting
Abstract
Keywords
Full Text:
PDFReferences
C. Acar and I. Dincer, “Energy and exergy analyses of a novel photoelectrochemical hydrogen production system,” Int. J. Hydrog. Energy, vol. 42, no. 52, pp. 30550–30558, Dec. 2017, doi: 10.1016/j.ijhydene.2017.10.008.
A. Grimm, W. A. de Jong, and G. J. Kramer, “Renewable hydrogen production: A techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis,” Int. J. Hydrog. Energy, vol. 45, no. 43, pp. 22545–22555, Sep. 2020, doi: 10.1016/j.ijhydene.2020.06.092.
W. Yang, R. R. Prabhakar, J. Tan, S. D. Tilley, and J. Moon, “Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting,” Chem. Soc. Rev., vol. 48, no. 19, pp. 4979–5015, Sep. 2019, doi: 10.1039/C8CS00997J.
A. Thakur, D. Ghosh, P. Devi, K.-H. Kim, and P. Kumar, “Current progress and challenges in photoelectrode materials for the production of hydrogen,” Chem. Eng. J., vol. 397, p. 125415, Oct. 2020, doi: 10.1016/j.cej.2020.125415.
S. F. Ahmed, M. Mofijur, S. Nuzhat, N. Rafa, and A. Musharrat, “Sustainable hydrogen production: Technological advancements and economic analysis,” Int. J. Hydrog. Energy, vol. 47, no. 88, pp. 37227–37255, Oct. 2022, doi: 10.1016/j.ijhydene.2021.12.029.
J. Hu, S. Zhao, X. Zhao, and Z. Chen, “Strategies of Anode Materials Design towards Improved Photoelectrochemical Water Splitting Efficiency,” Coatings, vol. 9, no. 5, Art. no. 5, May 2019, doi: 10.3390/coatings9050309.
T. A. Dontsova, S. V. Nahirniak, and I. M. Astrelin, “Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose,” J. Nanomater., vol. 2019, p. e5942194, Apr. 2019, doi: 10.1155/2019/5942194.
M. A. Borysiewicz, “ZnO as a Functional Material, a Review,” Crystals, vol. 9, no. 10, Art. no. 10, Oct. 2019, doi: 10.3390/cryst9100505.
M. Sufyan, U. Mehmood, Y. Qayyum Gill, R. Nazar, and A. Ul Haq Khan, “Hydrothermally synthesize zinc oxide (ZnO) nanorods as an effective photoanode material for third-generation Dye-sensitized solar cells (DSSCs),” Mater. Lett., vol. 297, p. 130017, Aug. 2021, doi: 10.1016/j.matlet.2021.130017.
M. Singh, D. Vadher, V. Dixit, and C. Jariwala, “Synthesis, optimization and characterization of zinc oxide nanoparticles prepared by sol–gel technique,” Mater. Today Proc., vol. 48, pp. 690–692, 2022, doi: 10.1016/j.matpr.2021.08.145.
N. Mufti, M. Tommy Hasan Abadi, A. Yasrina, Sunaryono, and Yudyanto, “Photoelectrochemical Performance of ZnO Nanorods Grown on Stainless Steel Substrate,” IOP Conf. Ser. Mater. Sci. Eng., vol. 515, p. 012023, Apr. 2019, doi: 10.1088/1757-899X/515/1/012023.
C. Chen, H. Bai, Z. Da, M. Li, X. Yan, and J. Jiang, “Hydrothermal synthesis of Fe2O3/ZnO heterojunction photoanode for photoelectrochemical water splitting,” Funct. Mater. Lett., vol. 08, no. 05, p. 1550058, Oct. 2015, doi: 10.1142/S1793604715500587.
H. J. Tan, Z. Zainal, Z. A. Talib, H. N. Lim, and S. Shafie, “Synthesis of high quality hydrothermally grown ZnO nanorods for photoelectrochemical cell electrode,” Ceram. Int., vol. 47, no. 10, pp. 14194–14207, May 2021, doi: 10.1016/j.ceramint.2021.02.005.
W. Zhang, W. Wang, H. Shi, Y. Liang, J. Fu, and M. Zhu, “Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable Au nanoparticles,” Sol. Energy Mater. Sol. Cells, vol. 180, pp. 25–33, Jun. 2018, doi: 10.1016/j.solmat.2018.02.020.
M. T. H. Abadi, E. K. Maula, Sunaryono, S. Zulaikah, H. Setiyanto, and N. Mufti, “Fe3O4/ZnO bilayer for photoelectrochemical properties enhancement of current efficiency,” AIP Conf. Proc., vol. 2251, no. 1, p. 040019, Aug. 2020, doi: 10.1063/5.0015839.
G. O. Rabell, M. R. Alfaro Cruz, and I. Juárez-Ramírez, “Photoelectrochemical (PEC) analysis of ZnO/Al photoelectrodes and its photocatalytic activity for hydrogen production,” Int. J. Hydrog. Energy, vol. 47, no. 12, pp. 7770–7782, Feb. 2022, doi: 10.1016/j.ijhydene.2021.12.107.
H. Aydın, F. Yakuphanoglu, and C. Aydın, “Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties,” J. Alloys Compd., vol. 773, pp. 802–811, Jan. 2019, doi: 10.1016/j.jallcom.2018.09.327.
S. Shet, K.-S. Ahn, T. Deutsch, H. Wang, N. Ravindra, and Y. Yan, “Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting,” J. Mater. Res., vol. 25, no. 1, pp. 69–75, Jan. 2010, doi: 10.1557/JMR.2010.0017.
S. Zhong, M. Morales-Masis, M. Mews, L. Korte, Q. Jeangros, and W. Wu, “Exploring co-sputtering of ZnO:Al and SiO2 for efficient electron-selective contacts on silicon solar cells,” Sol. Energy Mater. Sol. Cells, vol. 194, pp. 67–73, Jun. 2019, doi: 10.1016/j.solmat.2019.02.005.
G. De Alvarenga, B. M. Hryniewicz, I. Jasper, R. J. Silva, V. Klobukoski, and F. S. Costa, “Recent trends of micro and nanostructured conducting polymers in health and environmental applications,” J. Electroanal. Chem., vol. 879, p. 114754, Dec. 2020, doi: 10.1016/j.jelechem.2020.114754.
R. M. Abdelfattah, M. Shaban, F. Mohamed, A. A. M. El-Reedy, and H. M. Abd El-Salam, “A new Synthetic Polymers Based on Polyaniline for Dual-Functional Applications: Photoelectrochemical Water Splitting and Antibacterial Activities,” ACS Omega, vol. 6, no. 32, pp. 20779–20789, Aug. 2021, doi: 10.1021/acsomega.1c01802.
M. Kandasamy, A. Seetharaman, B. Chakraborty, I. Manohara Babu, J. J. William, and G. Muralidharan, “Experimental and Theoretical Investigation of the Energy-Storage Behavior of a Polyaniline-Linked Reduced-Graphene-Oxide– Sn O 2 Ternary Nanohybrid Electrode,” Phys. Rev. Appl., vol. 14, no. 2, p. 024067, Aug. 2020, doi: 10.1103/PhysRevApplied.14.024067.
S. Sharma, S. Singh, and N. Khare, “Enhanced photosensitization of zinc oxide nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting,” Int. J. Hydrog. Energy, vol. 41, no. 46, pp. 21088–21098, Dec. 2016, doi: 10.1016/j.ijhydene.2016.08.131.
T. Zou, C. Wang, R. Tan, W. Song, and Y. Cheng, “Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light,” J. Hazard. Mater., vol. 338, pp. 276–286, Sep. 2017, doi: 10.1016/j.jhazmat.2017.05.042.
F. Mouzaia, D. Djouadi, A. Chelouche, L. Hammiche, and T. Touam, “Particularities of pure and Al-doped ZnO nanostructures aerogels elaborated in supercritical isopropanol,” Arab J. Basic Appl. Sci., vol. 27, no. 1, pp. 423–430, Jan. 2020, doi: 10.1080/25765299.2020.1833484.
D. Zhang, W. Yu, L. Zhang, and X. Hao, “Progress in the Synthesis and Application of Transparent Conducting Film of AZO (ZnO:Al),” Materials, vol. 16, no. 16, Art. no. 16, Jan. 2023, doi: 10.3390/ma16165537.
A. B. Rosli, S. S. Shariffudin, Z. Awang, and S. H. Herman, “AZO nanorods thin films by sputtering method,” presented at the 8th International Conference on Nanoscience And Nanotechnology 2017 (Nano-Scitech 2017), Selangor, Malaysia, 2018, p. 020003. doi: 10.1063/1.5036849.
A. Yildiz, H. Cansizoglu, M. Turkoz, R. Abdulrahman, A. Al-Hilo, and T. Karabacak, “Glancing angle deposited Al-doped ZnO nanostructures with different structural and optical properties,” Thin Solid Films, vol. 589, pp. 764–769, Aug. 2015, doi: 10.1016/j.tsf.2015.06.058.
M.-H. Hong, S.-Y. Jung, T.-J. Ha, W.-S. Seo, Y. S. Lim, and S. Shin, “Thermoelectric properties of mesoporous TiO 2 thin films through annealing temperature and ratio of surfactant,” Surf. Coat. Technol., vol. 231, pp. 370–373, Sep. 2013, doi: 10.1016/j.surfcoat.2012.07.035.
X. Sun, W. Luo, L. Chen, L. Zheng, C. Bao, and P. Sun, “Synthesis of porous Al doped ZnO nanosheets with high adsorption and photodecolorizative activity and the key role of Al doping for methyl orange removal,” RSC Adv., vol. 6, no. 3, pp. 2241–2251, 2016, doi: 10.1039/C5RA21954J.
D. Q. J. C. Augusto, D. A. F. J. Batista, D. M. N. J. Quinzinho, I. O. Nascimento, D. S. I. Alves, and D. O. Q. M. Gerlania, “Structural and optical properties of Al-doped ZnO thin films produced by magnetron sputtering,” Process. Appl. Ceram., vol. 14, no. 2, pp. 119–127, 2020.
X. Chong, L. Li, X. Yan, D. Hu, H. Li, and Y. Wang, “Synthesis, characterization and room temperature photoluminescence properties of Al doped ZnO nanorods,” Phys. E Low-Dimens. Syst. Nanostructures, vol. 44, no. 7–8, pp. 1399–1405, Apr. 2012, doi: 10.1016/j.physe.2012.03.001.
A. Henni, A. Merrouche, L. Telli, and A. Karar, “Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition,” J. Electroanal. Chem., vol. 763, pp. 149–154, Feb. 2016, doi: 10.1016/j.jelechem.2015.12.037.
S. Kim, S. Lee, J. Kim, J. Kim, D. Y. Kim, and S.-O. Kim, “Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method,” Electron. Mater. Lett., vol. 9, Jul. 2013, doi: 10.1007/s13391-013-0048-7.
T. P. Rao, M. C. S. Kumar, S. A. Angayarkanni, and M. Ashok, “Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis,” J. Alloys Compd., vol. 485, no. 1–2, pp. 413–417, Oct. 2009, doi: 10.1016/j.jallcom.2009.05.116.
C. Abed, C. Bouzidi, H. Elhouichet, B. Gelloz, and M. Ferid, “Mg doping induced high structural quality of sol–gel ZnO nanocrystals: Application in photocatalysis,” Appl. Surf. Sci., vol. 349, pp. 855–863, Sep. 2015, doi: 10.1016/j.apsusc.2015.05.078.
K. Gherab, Y. Al-Douri, C. H. Voon, U. Hashim, M. Ameri, and A. Bouhemadou, “Aluminium nanoparticles size effect on the optical and structural properties of ZnO nanostructures synthesized by spin-coating technique,” Results Phys., vol. 7, pp. 1190–1197, 2017, doi: 10.1016/j.rinp.2017.03.013.
J. Jia, A. Takasaki, N. Oka, and Y. Shigesato, “Experimental observation on the Fermi level shift in polycrystalline Al-doped ZnO films,” J. Appl. Phys., vol. 112, no. 1, p. 013718, Jul. 2012, doi: 10.1063/1.4733969.
R. H. Coridan, A. C. Nielander, S. A. Francis, M. T. McDowell, V. Dix, and S. M. Chatman, “Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation,” Energy Environ. Sci., vol. 8, no. 10, pp. 2886–2901, 2015, doi: 10.1039/C5EE00777A.
M. T. H. Abadi, N. A. Sofa, S. Zulaikah, and N. Mufti, “Influence of Au Sputtered in ZnO/Au/PANI Heterostructures Film for Photoelectrochemical Cells,” Mater. Sci. Forum, vol. 1028, pp. 117–126, 2021, doi: 10.4028/www.scientific.net/MSF.1028.117.
DOI: http://dx.doi.org/10.17977/um016v7i22023p202
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Mechanical Engineering Science and Technology (JMEST)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats