Properties of Cassava Starch based Bioplastic Reinforced by Nanoclay

Nanang Eko Wahyuningtiyas, Heru Suryanto

Abstract


Synthetic Synthetic plastic is chemical materials which cause severe environmental problems. Incinerating plastic waste leads to release of hazardous gases, which is not good for humans. Bioplastic can help reduce the dependence on fossil fuels and petroleum, that bioplastic can solve the problem of synthetic plastic use. This research aims to define the properties of the cassava starch-based bioplastic reinforced by nanoclay. Methods were experimental with bioplastic component of cassava starch, glycerol as plasticizer and nanoclay as reinforcement. The bioplastic was analyzed using XRD, tensile test, moisture absorption, biodegradability, and compared with another bioplastic. The results show that the addition of nanoclay into bioplastic results increasing the tensile strength of bioplastic also increases from 5.2 MPa to 6.3 MPa. This research revealed that complete degradation of nanoclay reinforced bioplastic could be achieved on the 6th day.


Keywords


biodegradability, nanoclay, starch-based bioplastic, tensile strength

Full Text:

PDF

References


N. E. Wahyuningtiyas, H. Suryanto, E. Rudiyanto, Sukarni, and P. Puspitasari, “Thermogravimetric and kinetic analysis of cassava starch based bioplastic,” JMEST, vol. 1, no. 2, pp. 1–16, 2017.

N. E. Wahyuningtiyas and H. Suryanto, “Analysis of Biodegradation of Bioplastics Made of Cassava Starch,” JMEST, vol. 1, no. 1, pp. 41–54, 2017.

S. M. Emadian, T. T. Onay, and B. Demirel, “Biodegradation of bioplastics in natural environments,” Waste Manag., vol. 59, pp. 526–536, 2017.

N. A. Mostafa, Farag Awatef A., H. M. Abo-dief, and A. M. Tayeb, “Production of biodegradable plastic from agricultural wastes,” Arab. J. Chem., pp. 4–11, 2014.

Tempo, “Produk Industri Bioplastik Ditargetkan Tumbuh 5%,” 2017. [Online]. Available: https://bisnis.tempo.co/read/873501/produk-industri-bioplastik-ditargetkan-tumbuh-5-persen. [Accessed: 25-Mar-2018].

L. Averous, “Biodegradable Multiphase Systems Based on Plasticized Starch: A Review,” Macromol. Sci. Part C Polym. Rev., vol. 44, no. 3, pp. 231–274, 2004.

N. Wang, Y. Jiugao, M. Xiafei, and H. Chunmei, “An Investigation of the Physical Properties of Extruded Glycerol- and Formamide-Plasticized Cornstarch,” Thermoplast. Compos. Mater., vol. 22, no. 3, pp. 273–291, 2009.

N. F. Magalhães and C. T. Andrade, “Thermoplastic cornstarch/clay hybrids: Effect of clay type and content on physical properties,” Carbohydr. Polym., vol. 75, no. 4, pp. 712–718, Feb. 2009.

F. Razza, F. Degli Innocenti, A. Dobon, C. Aliaga, C. Sanchez, and M. Hortal, “Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark,” J. Clean. Prod., vol. 102, pp. 493–500, Sep. 2015.

S. Domenek, P. Feuilloley, J. Gratraud, M.-H. Morel, and S. Guilbert, “Biodegradability of wheat gluten based bioplastics,” Chemosphere, vol. 54, no. 4, pp. 551–559, Jan. 2004.

Y. Song and Q. Zheng, “Preparation and properties of thermo-molded bioplastics of glutenin-rich fraction,” Cereal Sci., vol. 48, no. 1, pp. 77–82, 2008.

G. J. Gutierrez, P. Partal, M. G. M., and C. Gallegos, “Effect of processing on the viscoelastic, tensile and optical properties of albumen/starch-based bioplastics,” Carbohydr. Polym., vol. 84, no. 1, pp. 308–315, 2011.

E. U. Aprilia, “Tiga Negara Asia Berpotensi Jadi Tujuan Ekspor Singkong,” Tempo, 2011. [Online]. Available: https://bisnis.tempo.co/read/339185/tiga-negara-asia-berpotensi-jadi-tujuan-ekspor-singkong. [Accessed: 25-Mar-2018].

R. Jain and A. Tiwari, “Biosynthesis of planet friendly bioplastics using renewable carbon source,” J. Environ. Heal. Sci. Eng., vol. 13, no. 1, p. 11, Dec. 2015.

O. V. López, L. A. Castillo, M. A. García, M. A. Villar, and S. E. Barbosa, “Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles,” Food Hydrocoll., vol. 43, pp. 18–24, Jan. 2015.

V. G. L. Souza and F. A. Luisa, “Nanoparticles in food packaging: Biodegradability and potential migration to food-A review,” Food Packag. Shelf Life, vol. 8, pp. 63–70, 2016.

O. T. Carvalho, L. Averous, and C. C. Tadini, “Mechanical properties of cassava starch-based nano-biocomposites,” Int. Congr. Eng. Food, Athens, Greece, pp. 111–112, 2011.

L. S. Kyong, Seong Dong Gi, and Youn Jae Ryoun, “Degradation and rheological properties of biodegradable nanocomposites prepared by melt intercalation method,” Fibers Polym., vol. 6, no. 4, pp. 289–296, 2005.

ASTM D 882, Standard Test Method for Tensile Properties of Thin Plastic Sheeting. United States: ASTM International, 2004.

ASTM D 570, Standard Test Method for Water Absorption of Plastics. 2004.

C. R. Di Franco, V. P. Cyras, J. P. Busalmen, R. A. Ruseckaite, and A. Vázquez, “Degradation of polycaprolactone/starch blends and composites with sisal fibre,” Polym. Degrad. Stab., vol. 86, no. 1, pp. 95–103, 2004.

Q. P. Zhong and Xia Wen Shui, “Physicochemical properties of edible and preservative films from chitosan/cassava starch/gelatin blend plasticized with glycerol,” Food Technol. Biotechnol., vol. 46, no. 3, pp. 262–269, 2008.

H. Suryanto, P. T. Hutomo, R. Wanjaya, and P. Puspitasari, “The Structure of Bioplastic from Cassava Starch with Nanoclay Reinforcement,” in AIP International Proceeding International Mechanical Engineering and Engineering Education (IMEEEC), 2016, p. 030027–(1–4).

X. Tang, S. Alavi, and T. J. Herald, “Barrier and mechanical properties of starch-clay nanocomposite films,” Cereal Chem., vol. 85, no. 3, pp. 433–439, 2008.

H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, J. L. White, J. W. Cho, and D. R. Paul, “Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites,” Polymer (Guildf)., vol. 42, no. 23, pp. 9513–9522, Nov. 2001.

A. M. Slavutsky, M. A. Bertuzzi, and M. Armada, “Water barrier properties of starch-clay nanocomposite films,” Brazilian J. Food Technol., vol. 15, no. 3, pp. 208–218, Sep. 2012.

H.-M. Wilhelm, M.-R. Sierakowski, G. P. Souza, and F. Wypych, “Starch films reinforced with mineral clay,” Carbohydr. Polym., vol. 52, no. 2, pp. 101–110, May 2003.

G. Bhat, R. R. Hegde, M. G. Kamath, and B. Deshpande, “Nanoclay reinforced fibers and nonwovens,” J. Eng. Fiber. Fabr., vol. 3, no. 3, pp. 22–34, 2008.

J. W. Ho, L. T. Sin, S. T. Bee, and T. T. Tee, “Mechanical properties investigation on thermoplastic starch (TPS) / montmorillonite nano-clay (MMT)/ alumina trihydrate (ATH) nanocomposites film,” in Conference Paper Paper Number 2CE13, 2014, pp. 1–16.

M. A. Omotoso, O. S. Adeyefa, E. A. Animashaun, and O. Osibanjo, “Biodegradable starch film from cassava, corn, potato, and yam,” Chem. Mater. Res., vol. 7, no. 12, pp. 15–24, 2015.

M. G. Lomelí-Ramírez, S. G. Kestur, R. Manríquez-González, S. Iwakiri, G. B. de Muniz, and T. S. Flores-Sahagun, “Bio-composites of cassava Starch-green coconut fiber: Part II—Structure and properties,” Carbohydr. Polym., vol. 102, no. 1, pp. 576–583, Feb. 2014.

B. Stiller, “The effect of montmorillonite nanoclay on mechanical and barrier properties of mung bean starch films,” Thesis Clemson University, 2008.

P. Kampeerapappun, D. Aht-ong, D. Pentrakoon, and K. Srikulkit, “Preparation of cassava starch/montmorillonite composite film,” Carbohydr. Polym., vol. 67, no. 2, pp. 155–163, 2007.

M. S. Nazir, M. H. M. Kassim, L. Mohapatra, M. A. Gilani, M. R. Raza, and K. Majeed, “Characteristic Properties of Nanoclays and Characterization of Nanoparticulates and Nanocomposites,” in Nanoclay Reinforced Polymer Composites, M. Jawaid, A. el K. Qaiss, and R. Bouhfid, Eds. Singapore: Springer Singapore, 2016, pp. 35–55.

S. Kumar and P. Maiti, “Understanding the controlled biodegradation of polymers using nanoclays,” Polymer (Guildf)., vol. 76, pp. 25–33, Oct. 2015.

M. Shayan, H. Azizi, I. Ghasemi, and M. Karrabi, “Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid,” Carbohydr. Polym., vol. 124, pp. 237–244, Jun. 2015.

S. Supriyono, H. H. Kusuma, M. Mulyatun, and K. B. Niski, “Synthesis and Characterization of Cassava Shell Based Biodegradable Plastic with Kitosan Addition,” J. Nat. Sci. Math. Res., vol. 3, no. 1, pp. 198–202, 2017.

N. A. Ismail, S. Mohd Tahir, N. Yahya, M. F. Abdul Wahid, N. E. Khairuddin, I. Hashim, N. Rosli, and M. A. Abdullah, “Synthesis and Characterization of Biodegradable Starch-Based Bioplastics,” Mater. Sci. Forum, vol. 846, no. June 2017, pp. 673–678, Mar. 2016.

D. Prashar and S. Kumar, “Synthesis, Characterization and Evaluation of Physical Properties of Biodegradable Composites from Corn Starch,” J. Pharmacogn. Phytochem., vol. 1, no. 2, pp. 20–26, 2012.

H. K. Webb, J. Arnott, R. J. Crawford, and E. P. Ivanova, “Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate),” Polymers (Basel)., vol. 5, pp. 1–18, 2013.




DOI: http://dx.doi.org/10.17977/um016v2i12018p020

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Journal of Mechanical Engineering Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats