Computational Fluid Dynamics Analysis of Temperature Distribution in Solar Distillation Panel with Various Flat Plate Materials
Abstract
Keywords
Full Text:
PDFReferences
M. Nasrollahi, A. Motevali, A. Banakar, and M. Montazeri, “Comparison of the cumulative exergy demand of phase change and reverse osmosis desalination plants with environmental impacts approach,” Desalination, vol. 572, p. 117156, Mar. 2024, doi: 10.1016/J.DESAL.2023.117156.
H.Y. Nanlohy, H. Riupassa, and M. Setiyo, “Characterizing of Nano Activated Bio-Carbon of Sago Waste as a Homogeneous Combustion Catalyst,” Automot. Exp., vol. 7, no. 1, pp. 77–85, Apr. 2024, doi: 10.31603/ae.10619.
A. Sanata, I. Sholahuddin, and H.Y. Nanlohy, “Characterization of biogas as an alternative fuel in micro-scale combustion technology,” Int. J. Integr. Eng., vol. 15, no. 4, Aug. 2023, doi: 10.30880/ijie.2023.15.04.006.
V.R. Raju and R.L. Narayana, “Effect of flat plate collectors in series on performance of active solar still for Indian coastal climatic condition,” J. King Saud Univ. - Eng. Sci., vol. 30, no. 1, pp. 78–85, Jan. 2018, doi: 10.1016/j.jksues.2015.12.008.
Z. Li, X. Xu, X. Sheng, P. Lin, et al., “Solar-powered sustainable water production: state-of-the-art technologies for sunlight-energy-water nexus,” ACS Nano, vol. 15, no. 8, pp. 12535–12566, Aug. 2021, doi: 10.1021/ACSNANO.1C01590.
H.Y. Nanlohy, I.N.G. Wardana, M. Yamaguchi, and T. Ueda, “The role of rhodium sulfate on the bond angles of triglyceride molecules and their effect on the combustion characteristics of crude jatropha oil droplets,” Fuel, vol. 279, p. 118373, Nov. 2020, doi: 10.1016/j.fuel.2020.118373.
J.U. Kim, S. Lee, S.J. Kang, and T. Il Kim, “Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion,” Nanoscale, vol. 10, no. 46, pp. 21555–21574, Dec. 2018, doi: 10.1039/C8NR06024J.
D. Davra, P. Mehta, N. Patel, and B. Markam, “Solar-enhanced freshwater generation in arid coastal environments: A double basin stepped solar still with vertical wick assistance study in northern Gujarat,” Sol. Energy, vol. 268, p. 112297, Jan. 2024, doi: 10.1016/J.SOLENER.2023.112297.
M. Gao, L. Zhu, C.K. Peh, and G.W. Ho, “Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production,” Energy Environ. Sci., vol. 12, no. 3, pp. 841–864, Mar. 2019, doi: 10.1039/C8EE01146J.
S. Cao, Q. Jiang, X. Wu, D. Ghim, et al., “Advances in solar evaporator materials for freshwater generation,” J. Mater. Chem. A, vol. 7, no. 42, pp. 24092–24123, 2019, doi: 10.1039/C9TA06034K.
S. Tian, X. Li, J. Ren, Z. Zhou, et al., “Emerging heat-localized solar distillation systems: Solar interfacial distillation VS photothermal membrane distillation,” Desalination, vol. 572, p. 117147, Mar. 2024, doi: 10.1016/J.DESAL.2023.117147.
X. Liu, D. D. Mishra, X. Wang, H. Peng, and C. Hu, “Towards highly efficient solar-driven interfacial evaporation for desalination,” J. Mater. Chem. A, vol. 8, no. 35, pp. 17907–17937, Sep. 2020, doi: 10.1039/C9TA12612K.
Z. Xu, Z. Li, Y. Jiang, G. Xu, et al., “Recent advances in solar-driven evaporation systems,” J. Mater. Chem. A, vol. 8, no. 48, pp. 25571–25600, Dec. 2020, doi: 10.1039/D0TA08869B.
Z. Zhao, C. Wang, D. Wei, and F. Wang, “Condensation device design represents a critical step for solar-driven water evaporation toward practical applications,” Cell Rep. Phys. Sci., vol. 5, no. 2, p. 101794, Feb. 2024, doi: 10.1016/J.XCRP.2024.101794.
V. Kashyap and H. Ghasemi, “Solar heat localization: Concept and emerging applications,” J. Mater. Chem. A, vol. 8, no. 15, pp. 7035–7065, Apr. 2020, doi: 10.1039/D0TA01004A.
T. Yan, G. Xie, H. Liu, Z. Wu, and L. Sun, “CFD investigation of vapor transportation in a tubular solar still operating under vacuum,” Int. J. Heat Mass Transf., vol. 156, p. 119917, Aug. 2020, doi: 10.1016/J.IJHEATMASSTRANSFER.2020.119917.
M.R. Salem, R.Y. Sakr, G.M.R. Assassa, and O.A. Aly, “Augmentation of solar still distillation performance using waste heat energy and guiding vanes: A field study,” Desalination, vol. 572, p. 117150, Mar. 2024, doi: 10.1016/J.DESAL.2023.117150.
X. Zhou, F. Zhao, P. Zhang, and G. Yu, “Solar water evaporation toward water purification and beyond,” ACS Mater. Lett., vol. 3, no. 8, pp. 1112–1129, Aug. 2021, doi: 10.1021/ACSMATERIALSLETT.1C00304.
L. Zhang, Z. Xu, L. Zhao, B. Bhatia, et al., “Passive, high-efficiency thermally-localized solar desalination,” Energy Environ. Sci., vol. 14, no. 4, pp. 1771–1793, Apr. 2021, doi: 10.1039/D0EE03991H.
J. Huang, H. Zheng, and H. Kong, “Key pathways for efficient solar thermal desalination,” Energy Convers. Manag., vol. 299, p. 117806, Jan. 2024, doi: 10.1016/J.ENCONMAN.2023.117806.
F. He, X. Wu, J. Gao, and Z. Wang, “Solar-driven interfacial evaporation toward clean water production: burgeoning materials, concepts and technologies,” J. Mater. Chem. A, vol. 9, no. 48, pp. 27121–27139, Dec. 2021, doi: 10.1039/D1TA08886F.
Z. Zhu, Y. Xu, Y. Luo, W. Wang, and X. Chen, “Porous evaporators with special wettability for low-grade heat-driven water desalination,” J. Mater. Chem. A, vol. 9, no. 2, pp. 702–726, Jan. 2021, doi: 10.1039/D0TA09193F.
H. Ben Bacha, A.S. Abdullah, Z.M. Omara, and F.A. Essa, “Enhancing freshwater production in solar distillation: Hemispherical absorber modification and reflectors integration,” Sustain. Energy Technol. Assess., vol. 61, p. 103576, Jan. 2024, doi: 10.1016/J.SETA.2023.103576.
K. El Kadi, I. Adeyemi, and I. Janajreh, “Application of directional freezing for seawater desalination: Parametric analysis using experimental and computational methods,” Desalination, vol. 520, p. 115339, Dec. 2021, doi: 10.1016/J.DESAL.2021.115339.
A. Atiz, M. Erden, and M. Karakilcik, “Hydrogen production of flat plate solar collectors integrated with photovoltaic thermal panels,” Int. J. Hydrog. Energy, vol. 52, pp. 1408–1424, Jan. 2024, doi: 10.1016/j.ijhydene.2023.08.302.
A.S. Jawed, L. Nassar, H.M. Hegab, F.A. Marzooqi, et al., “Recent developments in solar-powered membrane distillation for sustainable desalination,” Heliyon, vol. 10, no. 11, p. e31656, Jun. 2024, doi: 10.1016/j.heliyon.2024.e31656.
A.Q. Al-Dujaili, A.H. Shallal, A.H. Sabry, O.I. Dallal Bashi, Y.M. Alkubaisi, and A.J. Humaidi, “Maximizing solar energy utilization and controlling electrical consumption in domestic water heaters by integrating with aluminum reflector,” Measurement, vol. 230, p. 114558, May 2024, doi: 10.1016/j.measurement.2024.114558.
M. El Hadi Attia, A.E. Kabeel, M. Abdelgaied, A. Aljabri, and M.A. Elazab, “Performance optimization and comparative study of a conical solar distiller with optimized construction of aluminium balls as energy storage materials,” Desalination Water Treat., vol. 319, p. 100504, Jul. 2024, doi: 10.1016/j.dwt.2024.100504.
J. Mustafa, M.M. Abdullah, S. Husain, S. Alqaed, E.H. Malekshah, and M. Sharifpur, “A two-phase analysis of the use of water-aluminum nanofluid in a solar still with a layer of phase change materials,” Eng. Anal. Bound. Elem., vol. 152, pp. 627–636, Jul. 2023, doi: 10.1016/j.enganabound.2023.04.030.
A. Sajedi, S.D. Farahani, and A. Alizadeh, “Numerical investigation and group method of data handling -based prediction on new flat plate solar collector integrated with nanoparticles enhanced phase change materials and tube rotation mechanism,” J. Energy Storage, vol. 67, p. 107542, Sep. 2023, doi: 10.1016/j.est.2023.107542.
A. Ansari, F.M. Galogahi, G. Millar, F. Helfer, et al., “Computational fluid dynamics simulations of solar-assisted, spacer-filled direct contact membrane distillation: Seeking performance improvement,” Desalination, vol. 545, p. 116181, Jan. 2023, doi: 10.1016/j.desal.2022.116181.
M. Mohammadi, S. Vakilipour, and R. Hekmatkhah, “Unsteady film condensation underneath the inclined wall of a solar still desalination system,” Int. Commun. Heat Mass Transf., vol. 156, p. 107632, Aug. 2024, doi: 10.1016/j.icheatmasstransfer.2024.107632.
P.I. Babb, S.F. Ahmadi, F. Brent, R. Gans, et al., “Salt-rejecting continuous passive solar thermal desalination via convective flow and thin-film condensation,” Cell Rep. Phys. Sci., vol. 4, no. 12, p. 101682, Dec. 2023, doi: 10.1016/j.xcrp.2023.101682.
S. Saha, M.R.I. Sarker, M.A. Kader, M.M. Ahmed, S.S. Tuly, and N.N. Mustafi, “Development of a vacuum double-slope solar still for enhanced freshwater productivity,” Sol. Energy, vol. 270, p. 112385, Mar. 2024, doi: 10.1016/J.SOLENER.2024.112385.
M.U. Farid, J.A. Kharraz, S. Sharma, R.J. Khan, et al., “Technological advancements in water heating approaches for membrane distillation desalination process: From bulk to localized heating,” Desalination, vol. 574, p. 117235, Apr. 2024, doi: 10.1016/J.DESAL.2023.117235.
M. Tawalbeh, S. Mohammed, A. Alnaqbi, S. Alshehhi, and A. Al-Othman, “Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates,” Renew. Energy, vol. 202, pp. 667–685, Jan. 2023, doi: 10.1016/J.RENENE.2022.11.106.
N. Prakash, A. Chaudhuri, and S.P. Das, “Numerical modelling and analysis of concentration polarization and scaling of gypsum over RO membrane during seawater desalination,” Chem. Eng. Res. Des., vol. 190, pp. 497–507, Feb. 2023, doi: 10.1016/J.CHERD.2022.12.050.
S. Shoeibi, H. Kargarsharifabad, N. Rahbar, G. Ahmadi, and M.R. Safaei, “Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis,” Sustain. Energy Technol. Assess., vol. 49, no. November 2021, p. 101728, 2022, doi: 10.1016/j.seta.2021.101728.
W. Sun, Z. Liu, Y. Liu, and Z. Wang, “Enhancing freshwater production with a high-performance solar interface evaporator and in low-vacuum environment: A solar-driven low-vacuum interfacial distillation system,” Desalination, vol. 568, p. 117014, Dec. 2023, doi: 10.1016/J.DESAL.2023.117014.
Y. Elhenawy, M. Bassyouni, K. Fouad, A.M. Sandid, M.A.E.R. Abu-Zeid, and T. Majozi, “Experimental and numerical simulation of solar membrane distillation and humidification – dehumidification water desalination system,” Renew. Energy, vol. 215, p. 118915, Oct. 2023, doi: 10.1016/J.RENENE.2023.118915.
A.A.V. Lisboa, R. Segurado, and M.A.A. Mendes, “Solar still performance for small-scale and low-cost seawater desalination: Model-based analysis and water yield enhancement techniques,” Sol. Energy, vol. 238, pp. 341–362, May 2022, doi: 10.1016/J.SOLENER.2022.04.007.
F. Lou, S. Nie, F. Yin, W. Lu, et al., “Numerical and experimental research on the integrated energy recovery and pressure boost device for seawater reverse osmosis desalination system,” Desalination, vol. 523, p. 115408, Feb. 2022, doi: 10.1016/J.DESAL.2021.115408.
S.S. Al Saleem, E. Al-Qadami, H.Z. Korany, Md. Shafiquzzaman et al., “Computational fluid dynamic applications for solar stills efficiency assessment: A review,” Sustain. Switz., vol. 14, no. 17, 2022, doi: 10.3390/su141710700.
O. Prakash, A. Ahmad, A. Kumar, S.M. Mozammil Hasnain, and G. Kumar, “Comprehensive analysis of design software application in solar distillation units,” Mater. Sci. Energy Technol., vol. 5, pp. 171–180, Jan. 2022, doi: 10.1016/j.mset.2022.01.005.
DOI: http://dx.doi.org/10.17977/um0168i12024p108
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Mechanical Engineering Science and Technology (JMEST)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats