Characterization of Hydroxyapatite Derived from Scallop Shell Waste Synthesized by Sonochemical Method with Different Temperature Calcination
Abstract
Keywords
Full Text:
PDFReferences
A.S. Hammood, S.S. Hassan, M.T. Alkhafagy, and H.L. Jaber, “Effect of calcination temperature on characterization of natural hydroxyapatite prepared from carp fish bones,” SN Applied Science, vol. 1, no. 436, pp. 1–12, 2019.
M. Akram, R. Ahmed, I. Shakir, W.A. W. Ibrahim, and R. Hussain, “Extracting hydroxyapatite and its precursors from natural resources,” Journal of Materials Science, vol. 49, no. 4, pp. 1461–1475, 2014.
P. Puspitasari, V. Yuwanda, Sukarni, and J.W. Dika, “The properties of eggshell powders with the variation of sintering duration,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2019.
P. Puspitasari, M. Chairil, S. Sukarni, and N.S.W. Supriyanto, “Physical properties and compressibility of quail eggshell nanopowder with heat treatment temperature variations,” Materials Research Express, vol. 8, no. 5, pp. 1–7, 2021.
P. Puspitasari and D.D. Pramono, “Phase identification, morphology, and compressibility of scallop shell powder (Amusium pleuronectes) for bone implant materials,” in Nanotechnologies in Green Chemistry and Environmental Sustainability, Boca Raton: CRC Press, 2022, pp. 5–25.
Dinas Ketahan Pangan Dan Pertanian Kota Surabaya, “Produksi ikan laut menurut jenis nya (ton) 2013-2018,” Surabaya, Apr. 2020. Accessed: Jul. 23, 2024. [Online]. Available: https://surabayakota.bps.go.id/statictable/2020/04/29/664/produksi-ikan-laut-menurut-jenis-nya-ton-2013-2018.html
A. Buasri, P. Worawanitchaphong, S. Trongyong, and V. Loryuenyong, “Utilization of scallop waste shell for biodiesel production from palm oil – optimization using Taguchi method,” APCBEE Procedia, vol. 8, no. Caas 2013, pp. 216–221, 2014.
A. Mufidun and A. Abtokhi, “Pemanfaatan filler serbuk cangkang kerang simping (Placuna placenta) dan matriks poliester sebagai bahan dasar pembuatan papan komposit,” Journal Neutrino, vol. 9, no. 1, pp. 1–7, 2016.
A. Pradifan, E. Sutrisno, and M. Hadiwidodo, “Studi penggunaan kitosan dari limbah cangkang kerang simping (Amusium Pleuronectes) sebagai biokoagulan untuk menurunkan kadar COD Dan TSS,” Journal Teknik Lingkungan, vol. 5, no. 3, 2016.
P. Puspitasari, D. D. Pramono, D. N. Fiansyah, A. A. Permanasari, N. Mufti, and J. A. Razak, “Biodiesel production from waste cooking oil using calcium oxide derived from scallop shell waste,” Clean Energy, vol. 8, no. 2, pp. 113–126, Apr. 2024.
F.Y. Syafaat and Y. Yusuf, “Influence of ca/p concentration on hydroxyapatite (Hap) from asian moon scallop shell (amusium pleuronectes),” International Journal of Nanoelectronics and Materials, vol. 12, no. 3, pp. 357–362, 2019.
P. Arokiasamy, M.M.A.B. Abdullah, S.Z.A. Rahim, S. Luhar, A.V. Sandu, N.H. Jamil et al., “Synthesis methods of hydroxyapatite from natural sources: A review,” Ceramics International, vol. 48, no. 11, pp. 14959–14979, 2022.
S. Santhosh and S. Balasivanandha Prabu, “Thermal stability of nano hydroxyapatite synthesized from sea shells through wet chemical synthesis,” Materials Letters, vol. 97, pp. 121–124, 2013.
S. Rujitanapanich, P. Kumpapan, and P. Wanjanoi, “Synthesis of hydroxyapatite from oyster shell via precipitation,” Energy Procedia, vol. 56, no. C, pp. 112–117, 2014.
Charlena, I.H. Suparto, and D.K. Putri, “Synthesis of hydroxyapatite from rice fields snail shell (Bellamya javanica) through wet method and pore modification using chitosan,” Procedia Chemistry, vol. 17, pp. 27-35, 2015.
M.K. Alam, M.S. Hossain, M. Kawsar, N.M. Bahadur, and S. Ahmed, “Synthesis of nano-hydroxyapatite using emulsion, pyrolysis, combustion, and sonochemical methods and biogenic sources: a review,” RSC Advances, vol. 14, no. 5. Royal Society of Chemistry, pp. 3548–3559, Jan. 22, 2024.
H.B. Basri, N. Bano, S.S.B. Jikan, S. Adzila, and D.M. Zago, “Crystallographic and morphological studies of nanocrystalline hydroxyapatite synthesized from bovine bone at different calcination temperatures,” Journal of Mechanics of Continua and Mathematical Sciences, no. 4, pp. 11–19, Nov. 2019.
A. Aissa and M. Othmani, “Heavy metals removal using nano‐hydroxyapatite extracted from cattle bones,” ChemistrySelect, vol. 8, no. 13, Apr. 2023.
X. Song, F. Zhou, H. Ma, Y. Liu, and G. Wu, “Defect‐induced synthesis of highly dispersed hydroxyapatite‐supported vanadium oxide for the oxidative dehydrogenation of cyclohexane,” ChemCatChem, vol. 15, no. 20, Oct. 2023.
A.S. Hammood, S.S. Hassan, and M.T. Alkhafagy, “Access to optimal calcination temperature for nanoparticles synthesis from hydroxyapatite bovine femur Bone Wate,” Nano Biomedicine and Engineering, vol. 9, no. 3, pp. 228–235, 2017.
O.G. Agbabiaka, I.O. Oladele, A.D. Akinwekomi, A.A. Adediran, A.O. Balogun, O. G. Olasunkanm et al., “Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell,” Scientific African, vol. 8, Jul. 2020.
D.D. Pramono and P. Puspitasari, “Comparison of physicochemical properties of hydroxyapatite from scallop shell synthesized by wet chemical method with and without sonication process,” in Proceedings of the International Conference on Green Engineering & Technology 2022 (IConGETech 2022), Arau: AIP Conference Proceedings, Nov. 2024, p. 040034.
K.C.V. Kumar, T. J. Subha, K.G. Ahila, B. Ravindran, S.W. Chang, A.H. Mahmoud et al., “Spectral characterization of hydroxyapatite extracted from Black Sumatra and Fighting cock bone samples: A comparative analysis,” Saudi Journal of Biological Sciences, vol. 28, no. 1, pp. 840–846, Jan. 2021.
G.S. Kumar, E.K. Girija, M. Venkatesh, G. Karunakaran, E. Kolesnikov, and D. Kuznetsov, “One step method to synthesize flower-like hydroxyapatite architecture using mussel shell bio-waste as a calcium source,” Ceramics International, vol. 43, no. 3, pp. 3457–3461, Feb. 2017.
C. Ruiz-Aguilar, U. Olivares-Pinto, E.A. Aguilar-Reyes, R. López-Juárez, and I. Alfonso, “Characterization of β-tricalcium phosphate powders synthesized by sol-gel and mechanosynthesis,” Boletin de la Sociedad Espanola de Ceramica y Vidrio, vol. 57, no. 5, pp. 213–220, Sep. 2018.
M.Z.A. Khiri, K.A. Matori, M.H.M. Zaid, C.A.C. Abdullah, N. Zainuddin, I.M. Alibe et al., “Crystallization behavior of low-cost biphasic hydroxyapatite/β-tricalcium phosphate ceramic at high sintering temperatures derived from high potential calcium waste sources,” Results in Physics, vol. 12, pp. 638–644, Mar. 2019.
S. W. Lee, Y. Kim, H. T. Rho, and S. il Kim, “Microhardness and microstructural properties of a mixture of hydroxyapatite and β-tricalcium phosphate,” Journal of Asian Ceramic Societies, vol. 11, no. 1, pp. 11–17, 2023.
T.A.G. Pelizaro, A.G. Tolaba, J.E. Rodriguez-Chanfrau, Y. Veranes-Pantoja, and A.C. Guastaldi, “Influence of the application of ultrasound during the synthesis of calcium phosphates,” Journal of Bionanoscience, vol. 12, no. 5, pp. 733–738, 2018.
P.M. Derlet, “Sintering Theory,” Solutions. Paul Scherer Institute, 2017.
S.L. Kang, Sintering: Densification, Grain Growth and Microstructure, 1st ed. British: Elsevier, 2005.
A.H. Shah and M.A. Rather, “Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol-mediated method,” Materials Today Proceeding, vol. 44, pp. 482–488, 2021.
U. Ulusoy, “A Review of particle shape effects on material properties for various engineering applications: From macro to nanoscale,” Minerals, vol. 13, no. 1, pp. 1–81, Jan. 01, 2023.
W.Y. Jang, J.C. Pyun, and J.H. Chang, “Comparative in vitro dissolution assessment of calcined and uncalcined hydroxyapatite using differences in bioresorbability and biomineralization,” International Journal of Molecular Sciences, vol. 25, no. 1, pp. 1–17, 2024.
P. Puspitasari, A.F. Fauzi, H. Susanto, A.A. Permanasari, R.W. Gayatri, J.A. Razak et al., “ Phase identification and morphology of CaCO3 /CaO from Achatina fulica snail shell as the base material for hydroxyapatite,” IOP Conference Series: Materials Science and Engineering, vol. 1034, no. 1, p. 012128, Feb. 2021.
D.W. Callister, Materials Science and Engineering An Introduction. USA: John Willey and Sons, Inc., 2007.
S.H. Jaafar, M.H.M. Zaid, K.A. Matori, S.H.A. Aziz, H.M. Kamari, S. Honda et al., “Influence of calcination temperature on crystal growth and optical characteristics of Eu3+ Doped ZnO/Zn2SiO4 composites fabricated via simple thermal treatment method,” Crystals (Basel), vol. 11, no. 2, p. 115, Jan. 2021.
H. Peng, J. Wang, S. Lv, J. Wen, and J. F. Chen, “Synthesis and characterization of hydroxyapatite nanoparticles prepared by a high-gravity precipitation method,” Ceramics International, vol. 41, no. 10, pp. 14340–14349, 2015.
P.A. Forero-Sossa, J.D. Salazar-Martínez, A.L. Giraldo-Betancur, B. Segura-Giraldo, and E. Restrepo-Parra, “Temperature effect in physicochemical and bioactive behavior of biogenic hydroxyapatite obtained from porcine bones,” Scientific Reports, vol. 11, no. 11069, pp. 1–9 2021.
B. Li, B. Guo, H. Fan, and X. Zhang, “Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro,” Applied Surface Science, vol. 255, no. 2, pp. 357–360, 2008.
H.F.N. Zhorifah, P. Puspitasari, Andoko, D.I. Tsamroh, and A.A. Permanasari, “Optimization of the mastication strength of hydroxyapatite as an eggshell-based tooth filler,” AIP Conference Proceeding, vol. 2120, no. July, 2019.
M. Jevtic, M. Mitric, S. Skapin, B. Jancar, N. Ignjatovic, and D. Uskokovic, “Crystal structure of hydroxyapatite nanorods synthesized sonochemical homogeneous precipitation,” Crystal Growth & Design, vol. 8, no. 7, pp. 2217–2222, 2008.
X. Guo, H. Yan, S. Zhao, Z. Li, Y. Li, and X. Liang, “Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature,” Advanced Powder Technology, vol. 24, no. 6, pp. 1034–1038, Nov. 2013.
G.S. Kumar, L. Sathish, R. Govindan, and E.K. Girija, “Advances utilization of snail shells to synthesise hydroxyapatite nanorods for orthopedic applications †,” RSC Advance, vol. 5, pp. 39544–39548, 2015.
E.A. Ofudje, J.A. Akande, E.F. Sodiya, G.O. Ajayi, A.J. Ademoyegun, A.G. Al-Sehemi et al., “Bioactivity properties of hydroxyapatite/clay nanocomposites,” Scientific Reports, vol. 13, no. 1, pp. 1–12 2023.
A. Kurzyk, A. Szwed‑Georgiou, J. Pagacz, A. Antosik, P. Tymowicz‑Grzyb, A. Gerle et al., “Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications,” Scientific Reports, vol. 13, no. 1, Dec. 2023.
K.C.V. Kumar, T.J. Subha, K.G. Ahila, B. Ravindran, S.W. Chang, A.H. Mahmoud et al., “Spectral characterization of hydroxyapatite extracted from Black Sumatra and Fighting cock bone samples: A comparative analysis,” Saudi Journal of Biological Sciences, vol. 28, no. 1, pp. 840–846, Jan. 2021.
D. Xidaki, P. Agrafioti, D. Diomatari, A. Kaminari, E. Tsalavoutas-Psarras, P. Alexiou et al., “Synthesis of hydroxyapatite, β-Tricalcium phosphate and biphasic calcium phosphate particles to act as local delivery carriers of curcumin: Loading, release and in vitro studies,” Materials, vol. 11, no. 4, pp. 1–13, 2018.
DOI: http://dx.doi.org/10.17977/um016v8i22024p400
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Mechanical Engineering Science and Technology (JMEST)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats