Innovative Approaches for Improving ORC Performance: A Review of Pure Fluids, Zeotropic Mixtures, and Nanoparticles

Ebenezer Kumi, Vasudeva Rao Veeredhi, Christopher Enweremadu

Abstract


Although the organic Rankine Cycle (ORC) is said to effectively capture low-grade heat, its commercialization has been limited because of working fluid constraints and inefficiencies resulting from operating at low temperatures. This study reviews the working fluids used in organic Rankine cycles and examines how nanoparticles could enhance the efficiency of the ORC, by enhancing the thermophysical properties of the working fluids. Results from this review showed that zeotropic mixtures of pure fluids, provide a viable approach to improving the thermophysical characteristics of organic working fluids and have the potential to achieve thermo-economic performance superior to that of individual pure fluids. Research results on the relative effectiveness of zeotropic mixtures and pure fluids, however, are conflicting and call for further study. Although nanofluids have shown potential as heat transfer fluids, there has not been much research done on them as organic Rankine cycle working fluids. In comparison to typical nanoparticles, metal-organic heat carriers have been recognized as having substantial potential to improve organic Rankine cycle thermodynamic efficiency. Future study on nanofluids, particularly in zeotropic mixtures, is crucial for the creation of new working fluids for developing ORCs that could achieve a balance between thermodynamic, economic, and environmental performance required to recover low-grade heat and the generation of electricity.

Keywords


Nanofluids, nanoparticles, organic Rankine cycle, pure fluids, zeotropic mixtures

Full Text:

PDF

References


A. Desideri, S, Gusev, M van den Broek, V. Lemort, and S. Quoilin, “Experimental comparison of organic fluids for low-temperature ORC (Organic Rankine Cycle) systems for waste heat recovery applications,” Energy, vol. 97, pp. 460-469, Feb. 2016, doi: 10.1016/j.energy.2015.12.012

P. Arjunan, S. Lal, A. Suryan, and G.M. Joselin Herbert, “Selection of working fluids for solar organic Rankine cycle—a review,” International Journal of Energy Research, vol. 46, no. 5, pp. 20573-20599, 2022, doi: 10.1002/er.7723

B. Megaprastio, A.M. Zaka, R.S. Zahra, N. Aisyah, and H.M. Ariyadi, “Design of the organic Rankine cycle (ORC) system using R600 and R600a as working fluid,” in E3S Web of Conferences, vol. 448, pp. 04004, Nov. 2023, doi: 10.1051/e3sconf/202344804004

L. Liu, T. Zhu, and J. Ma, “Working fluid charge oriented off-design modeling of a small-scale Organic Rankine cycle system,” Energy Conversion and Management, vol. 148, pp. 944-953, Sep. 2017, doi: 10.1016/j.enconman.2017.06.009

R. Wang, Z. Ma, A.G. Diaz, and L. Jiang, “Comparative analysis of small-scale Organic Rankine cycle systems for solar energy utilisation,” Energies, vol. 12, no. 5, pp. 829, Mar., 2019, doi: 10.3390/en12050829

H. Ismail, A.A. Aziz, R.A. Rasih, N. Jenal, Z. Michael, and A. Roslan, “Performance of organic Rankine cycle using biomass as source of fuel,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 4, no. 1, pp. 29-46, 2016.

J. Freeman, K. Hellgardt, and C.N. Markides, “An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications,” Appl Energy, vol. 138, pp. 605-620, Jan. 2015, doi: org/10.1016/j.apenergy.2014.10.035

L. Tocci, T. Pal, I. Pesmazoglou, and B. Franchetti, “Small scale organic Rankine cycle (ORC): a techno-economic review,” Energies, vol. 10, no. 4, pp. 413, Mar. 2017, doi: org/10.3390/en10040413

A.F. Babatunde, and O.O. Sunday, “A review of working fluids for organic Rankine cycle (ORC) applications,” in IOP Conference Series: Materials Science and Engineering, vol. 413, pp. 012019, 2018, doi: 10.1088/1757-899X/413/1/012019

X. Zhang, M. Cao, Y. Zhang, and J. Wang, “Working fluid selection for organic Rankine cycle using single-screw expander,” Energies, vol. 12, no. 16, pp. 3197, Aug. 2019, doi: 10.3390/en12163197

J.J. García-Pabón, D. Mendez-Mendez, J.M. Bellman-Flores, J.M. Barroso-Maldonado, and A. Khosravi, A” Review of recent research on the use of R1234yf as an environmentally friendly fluid in the organic Rankine cycle,” Sustainability, vol. 13, no. 11, pp. 5864, Apr. 2021, doi: /doi.org/10.3390/su13115864

G. Baffoe, S. Ahmad, and R Bhandari, “The road to sustainable Kigali: a contextualized analysis of the challenges,” Cities, vol. 105, pp. 102838, Oct. 2020, doi: org/10.1016/j.cities.2020.102838

D. Deniz, “Thermodynamic and environmental analysis of low-grade waste heat recovery system for a ship power plant,” International Journal of Energy Science, vol. 1, no. 1, pp. 23-34, Jan. 2015, doi: 10.12783/ijes.2015.0501.04

R. Suprabha, C. R. Mahesha, and C.E. Nanjundappa, “Influence of process parameters and convective heat transfer on thermophysical properties of SiO2 nanofluids by multiobjective function analysis (DFA),” Journal of Nanomaterials, vol. 2023, 008046, 2023, doi: 10.1155/2023/1008046

R.P. Sharma, S.R. Mishra, and G.K. Panda, “Radiation absorption impact on the thermophysical properties of Cu- and TiO2-water nanofluids: Laplace transform technique,” International Journal of Modern Physics B, vol. 38, no. 18, pp. 2450238, 2023, doi: 10.1142/S0217979224502382

B. Saadatfar, R. Fakhari, and T. Fransson, “Conceptual modeling of nano fluid ORC for solar thermal polygeneration,” Energy Procedia, vol. 57, pp. 2696-2705, 2014, doi: 10.1016/j.egypro.2014.10.301

M.E. Mondejar, J.G. Andreasen, M. Regidor, S. Riva, G. Kontogeorgis, G. Persico, and F. Haglind, “Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems,” Energy Procedia, vol. 129, pp. 160-167, Sep. 2017, doi: 10.1016/j.egypro.2017.09.098

A. Pezzuolo, A. Benato, A. Stoppato, and A. Mirandola, “Fluid selection and plant configuration of an ORC-biomass fed system generating heat and/or power,” Energy Procedia, vol. 101, pp. 822-829, Nov. 2016, doi: 10.1016/j.egypro.2016.11.104

J.F. Li, H. Guo, B. Lei, Y.T. Wu, F. Ye, and C.F. Ma, “An overview on subcritical organic Rankine cycle configurations with pure organic fluids,” International Journal of Energy Research, vol. 45, no. 9, pp. 12536-12563, Apr. 2021, doi: 10.1002/er.6653

R.J. Xu, and Y. L. He, “A Vapor injector-based novel regenerative organic Rankine cycle,” Applied Thermal Engineering, vol. 31, no. 6-7, pp. 1238-1243, May 2011, doi: 10.1016/j.applthermaleng.2010.12.026

M. Imran, B.S. Park, H.J. Kim, D.H. Lee, M. Usman, and M. Heo, “Thermo-economic optimization of regenerative organic Rankine cycle for waste heat recovery applications,” Energy Conversion and Management, vol. 87, pp. 107-118, Nov. 2014, doi: 10.1016/j.enconman.2014.06.091

P.J. Mago, K.K. Srinivasan, L.M. Chamra and C. Somayaji, “An examination of exergy destruction in organic Rankine cycles,” International Journal of Energy Research, vol. 32 (2008), 10, pp. 926-938, Feb. 2008, doi: doi.org/10.1002/er.1406

S. Safarian, and F. Aramoun, “Energy and exergy assessments of modified organic Rankine cycles (ORCs),” Energy Reports, vol. 1, pp. 1-7, Nov. 2015, doi: 10.1016/j.egyr.2014.10.003

W. Wang, S. Deng, D. Zhao, L. Zhao, S. Lin, and M Chen, “Application of machine learning into organic Rankine cycle for prediction and optimization of thermal and exergy efficiency,” Energy Conversion and Management, vol. 210, pp. 112700, Apr. 2020, doi: 10.1016/j.enconman.2020.112700

M. Li, “Construction and preliminary test of a low-temperature regenerative organic Rankine cycle (ORC) using R123,” Renewable Energy, vol. 57, pp. 216-222, Sep. 2013, doi: 10.1016/j.renene.2013.01.042

L. Shi, G. Shu, H. Tian, and S. Deng, “A Review of modified organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR),” Renewable and Sustainable Energy Reviews, vol. 92, pp. 95-110, Sep. 2018, doi: 10.1016/j.rser.2018.04.023

S. Lecompte, H. Huisseune, M van den Broek, B. Vanslambrouck, and M Dr Paepe, “Review of Organic Rankine Cycle (ORC) Architectures for Waste Heat Recovery,” Renewable and Sustainable Energy Reviews, vol. 47, pp. 448-461, Jul. 2015, doi: 10.1016/j.rser.2015.03.089

A. Mahmoudi, M. Fazli, and M. R. Morad, “A recent review of waste heat recovery by organic Rankine cycle,” Applied Thermal Engineering, vol. 143, pp. 660-675, Oct. 2018, doi: 10.1016/j.applthermaleng.2018.07.136

B. F. Tchanche, M. Pétrissans, and G. Papadakis, “Heat resources and organic Rankine cycle machines,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 1185-1199, Nov. 2014, doi: 10.1016/j.rser.2014.07.139

T. Wang, Y. Zhang, Z. Peng, and G. Shu, “A review of research on thermal exhaust heat recovery with Rankine cycle,” Renewable and Sustainable Energy Reviews, vol. 15, no. 6, pp. 2862-2871, Aug. 2011, doi: 10.1016/j.rser.2011.03.015

N. Mazzi, S. Rech, and A. Lazzaretto, “Off-design dynamic model of a real organic Rankine cycle system fuelled by exhaust gases from industrial processes,” Energy, vol. 90, no. 1, pp. 537-551, Oct. 2015, doi: 10.1016/j.energy.2015.07.083

A. Uusitalo, J. Honkatukia, T. Turunen-Saaresti, and J. Larjola, “A thermodynamic analysis of waste heat recovery from reciprocating engine power plants by means of organic Rankine cycles,” Applied Thermal Engineering, vol. 70, no. 1, pp. 33-41, Sep. 2014, doi: 10.1016/j.applthermaleng.2014.04.073

F. Yang, X. Dong, H. Zhang, Z. Wang, K. Yang, J. Zhang, E. Wang, H. Liu, G. Zhao, “Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions,” Energy Conversion and Management, vol. 80, pp. 243-255, Apr. 2014, doi: 10.1016/j.enconman.2014.01.036

U. Larsen, L. Pierobon, F. Haglind, and C. Gabrielii, “Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection,” Energy, vol. 55, pp. 803-812. Jun. 2013, doi: 10.1016/j.energy.2013.03.021

M. Chys, M. van den Broek, B. Vanslambrouck, and M. De Paepe, “Potential of zeotropic mixtures as working fluids in organic Rankine cycles,” Energy, vol. 44, no. 1, pp. 623-632, Aug. 2012, doi: 10.1016/j.energy.2012.05.030

D. Meinel, C. Wieland, and H. Spliethoff, “Effect and comparison of different working fluids on a two-stage organic Rankine cycle (ORC) concept,” Applied Thermal Engineering, vol. 63, no. 1, pp. 246-253, Feb. 2014, doi: 10.1016/j.applthermaleng.2013.11.016

G. Li, “Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications Part I: Energy and exergy performance evaluation,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 477-499, Jan. 2016, doi: 10.1016/j.rser.2015.08.066

G. Pei, J. Li, and J. Ji, “Analysis of low temperature solar thermal electric generation using regenerative organic Rankine cycle,” Applied Thermal Engineering, vol. 30, no. 8-9, pp. 998-1004, Jun. 2010, doi: 10.1016/j.applthermaleng.2010.01.011

L. Branchini, A. De Pascale, and A. Peretto, “Systematic comparison of ORC configurations by means of comprehensive performance indexes,” Applied Thermal Engineering Eng, vol. 61, no. 2, pp. 129-140, Nov. 2013, doi: 10.1016/j.applthermaleng.2013.07.039

E. Wang, H. Zhang, B. Fan, and Y. Wu, “Optimized performances comparison of organic Rankine cycles for low grade waste heat recovery,” Journal of Mechanical Science and Technology, vol. 26, no. 8, pp. 2301-2312, Aug. 2012, doi: 10.1007/s12206-012-0603-4

B. Peris, J. Navarro-Esbrí, and F. Molés, “Bottoming organic Rankine cycle configurations to increase internal combustion engines power output from cooling water waste heat recovery,” Applied Thermal Engineering, vol. 61, no. 2, pp. 364-371, Nov. 2013, doi: 10.1016/j.applthermaleng.2013.08.016

X. Li, C. Zhao, and X. Hu, “Thermodynamic analysis of organic Rankine cycle with ejector,” Energy, vol. 42, no. 1, pp. 342-349, Jun. 2012, doi: 10.1016/j.energy.2012.03.047

H.M.D.P. Herath, M.A. Wijewardane, R.A.C.P. Ranasinghe, and J.G.A.S. Jayasekera, “Working fluid selection of organic Rankine cycles,” Energy Reports, vol. 6, pp. 680-686, Dec. 2020, doi: 10.1016/j.egyr.2020.11.150

O. Badr, S.D. Probert, and P.W. O’Callaghan, “Selecting a working fluid for a Rankine-cycle engine,” Applied Energy, vol. 21, no. 1, pp. 1-42, 1985, doi: 10.1016/0306-2619(85)90072-8

M. Kruzel, T. Bohdal, K. Dutkowski, W. Kuczyński, and K. Chliszcz, “Current research trends in the process of condensation of cooling zeotropic mixtures in compact condensers,” Energies, vol. 15, no. 6, pp. 2241, Mar. 2022, doi: 10.3390/en15062241

R.B. Vicencio, and E.C. Aedo, “A numerical model for boiling heat transfer coefficient of zeotropic mixtures,” in IOP Conference Series: Materials Science and Engineering, vol. 278, pp. 012062, 2017, doi:10.1088/1757-899X/278/1/012062

G. Györke, U.K. Deiters, A. Groniewsky, I. Lassu, and A.R. Imre, “Novel classification of pure working fluids for organic Rankine cycle,” Energy, vol. 145, pp. 288-300, Feb. 2018, doi: 10.1016/j.energy.2017.12.135

R. Vidhi, S. Kuravi, D. Yogi Goswami, E. Stefanakos, and A.S. Sabau, “Organic fluids in a supercritical Rankine cycle for low temperature power generation,” Journal of Energy Resources Technology, Transactions of the ASME, vol. 135, no. 4, pp. 042002, May 2013, doi: /10.1115/1.4023513

M.E. Siddiqui, E. Almatrafi, and U. Saeed, “Performance analysis of organic Rankine cycle with internal heat regeneration: comparative study of binary Mixtures and pure constituents in warm regions,” Processes, vol. 11, no. 8, pp. 2267, Jul. 2023, doi: /10.3390/pr11082267

F. Bin Yang, F.F. Yang, J. Li, S.Z. Hu, Z. Yang, and Y.Y. Duan, “Analysis of the thermodynamic performance limits of the organic Rankine cycle in low and medium temperature heat source applications,” Science China Technological Sciences, vol. 64, no. 8, pp. 1624-1640, Feb. 2021, doi: 10.1007/s11431-020-1787-6

Y. Pan, F. Yang, H. Zhang, Y. Yan, A. Yang, J. Liang, and M. Yu, “Performance prediction and working fluid active design of organic Rankine cycle based on molecular structure,” Energies, vol. 15, no. 21, pp. 8160, Nov, 2022, doi: 10.3390/en15218160

H. Lu, Z. Wang, L. Wang, S. Xu, and B. Hu, “Experimental study on a small-scale pumpless organic Rankine cycle with R1233zd(E) as working fluid at low temperature heat source,” International Journal of Energy Research, vol. 43, no. 3, Jan. 2019, doi: 10.1002/er.4354

D. Wang, X. Ling, H. Peng, L. Liu, and L. Tao, “Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation,” Energy, vol. 50, no. 1, pp. 343-352, Feb. 2013, doi: 10.1016/j.energy.2012.11.010

I.H. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and pseudo-pure fluid thermophysical property evaluation and the Open-source Thermophysical Property Library CoolProp,” Industrial Engineering Chemical Research, vol. 53, no. 6, pp. 2498-2508, 2014, doi: 0.1021/ie4033999

B. Saleh, G. Koglbauer, M. Wendland, and J. Fischer, “Working fluids for low-temperature organic Rankine cycles,” Energy, vol. 32, no. 7, pp. 1210-1221, Jul. 2007, doi: 10.1016/j.energy.2006.07.001

M. Bianchi, “Performance modelling and greenhouse impact assessment of a micro-ORC energy system working with HFCs, low GWP fluids and mixtures,” in E3S Web of Conferences, vol. 238, pp. 10002, Feb. 2021, doi: 10.1051/e3sconf/202123810002

S. Lecompte, B. Ameel, D. Ziviani, M. van den Broek, and M. De Paepe, “Exergy analysis of zeotropic mixtures as working fluids in organic Rankine cycles,” Energy Conversion and Management, vol. 85, pp. 727-739, Sep. 2014, doi: 10.1016/j.enconman.2014.02.028

X. Zhang, Y. Zhang, Z. Li, J. Wang, Y. Wu, and C. Ma, “Zeotropic mixture selection for an organic Rankine cycle using a single screw expander,” Energies, vol. 13, no. 5, pp. 1022, Feb. 2020, doi: 10.3390/en13051022

J.G. Andreasen, “Techno-economic feasibility analysis of zeotropic mixtures and pure fluids for organic Rankine cycle systems,” Applied Thermal Engineering, vol. 192, pp. 116791, Jun. 2021, doi: 10.1016/j.applthermaleng.2021.116791

S. Li, and Y. Dai, “Thermo-economic analysis of waste heat recovery ORC using zeotropic mixtures,” Journal of Energy Engineering, vol. 141, no. 4, pp. 04014050, Dec. 2015, doi: 10.1061/(ASCE)EY.1943-7897.0000245

Y. Wu, Y. Zhu, and L. Yu, “Thermal and economic performance analysis of zeotropic mixtures for organic Rankine cycles,” Applied Thermal Engineering, vol. 96, pp. 57-63, Mar. 2016, doi: 10.1016/j.applthermaleng.2015.11.083

O. Oyewunmi, and C. Markides, “Thermo-economic and heat transfer optimization of working-fluid mixtures in alLow-temperature organic Rankine cycle system,” Energies, vol. 9, no. 6, pp. 448, Jun. 2016, doi: 10.3390/en9060448

F. Heberle, and D. Brüggemann, “Thermo-economic analysis of zeotropic mixtures and pure working fluids in organic Rankine cycles for waste heat recovery,” Energies, vol. 9, no. 4, pp. 226, Mar. 2016, doi: 10.3390/en9040226

J. Andreasen, M. Kærn, L. Pierobon, U. Larsen, and F. Haglind, “Multi-objective optimization of organic Rankine cycle power plants using pure and mixed working fluids,” Energies, vol. 9, no. 5, pp. 322, Apr. 2016, doi: 10.3390/en9050322

M.H. Yang, R.H. Yeh, and T.C. Hung, “Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery, Energy, vol. 140, pp. 818-836, Dec. 2017, doi: 10.1016/j.energy.2017.08.059

M. Kolahi, M. Yari, S.M.S. Mahmoudi, and F. Mohammadkhani, “Thermodynamic and economic performance improvement of ORCs through using zeotropic mixtures: case of waste heat recovery in an offshore platform,” Case Studies in Thermal Engineering, vol. 8, pp. 51-70, Sep. 2016, doi: 10.1016/j.csite.2016.05.001

U. Muhammad, M. Imran, D.H. Lee, and B.S. Park, “Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam,” Energy Conversion and Management, vol. 103, pp. 1089-1100, Oct. 2015, doi: 10.1016/j.enconman.2015.07.045

H. Xi, M.-J. Li, Y.-L. He, and Y.-W. Zhang, “Economical evaluation and optimization of organic Rankine cycle with mixture working fluids using R245fa as flame retardant,” Applied Thermal Engineering, vol. 113, pp. 1056-1070, Feb. 2017, doi: 10.1016/j.applthermaleng.2016.11.059

M. Yang, and R. Yeh, “Optimum composition ratios of multicomponent mixtures of organic Rankine cycle for engine waste heat recovery,” International Journal of Energy Research, vol. 44, no. 2, pp. 1012-1030, Dec. 2019, doi: 10.1002/er.4977

M.H. Yang, “Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine,” Energy Conversion and Management, vol. 162, pp. 189-202, Apr. 2018, doi: 10.1016/j.enconman.2018.02.032

V.L. Le, A. Kheiri, M. Feidt, and S. Pelloux-Prayer, “Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid,” Energy, vol. 78, pp. 622-638, Dec. 2014, doi: 10.1016/j.energy.2014.10.051

P. Garg, and M.S. Orosz, “Economic optimization of organic Rankine cycle with pure fluids and mixtures for waste heat and solar applications using particle swarm optimization method,” Energy Conversion and Management, vol. 165, pp. 649-668, Dec. 2018, doi: 10.1016/j.enconman.2018.03.086

Z. Varga, and T. Csaba, “Techno-economic evaluation of waste heat recovery by organic Rankine cycle using pure light hydrocarbons and their mixtures as working fluid in a crude oil refinery,” Energy Conversion and Management, vol. 174, pp. 793-801, Oct. 2018, doi: 10.1016/j.enconman.2018.08.031

Y.-R. Li, M.-T. Du, C.-M. Wu, S.-Y. Wu, and C. Liu, “Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery,” Energy, vol. 77, pp. 509-519, Dec. 2014, doi: 10.1016/j.energy.2014.09.035

Y. Fang, F. Yang, and H. Zhang, “Comparative analysis and multi-objective optimization of organic Rankine cycle (ORC) using pure working fluids and their zeotropic mixtures for diesel engine waste heat recovery,” Applied Thermal Engineering, vol. 157, pp. 113704, Jul. 2019, doi: 10.1016/j.applthermaleng.2019.04.114

O.A. Oyewunmi, A.I. Taleb, A.J. Haslam, and C.N. Markides, “On the use of SAFT-VR Mie for assessing large-glide fluorocarbon working-fluid mixtures in organic Rankine cycles,” Applied Energy, vol. 163, pp. 263-282, Feb. 2016, doi: 10.1016/j.apenergy.2015.10.040

P.P. Prajapati, and V.K. Patel, “Thermo-economic optimization of a nanofluid based organic Rankine cycle: A multi-objective study and analysis,” Thermal Science and Engineering Progress, vol. 17, pp. 100381, Jun. 2020, doi: 10.1016/j.tsep.2019.100381

R. Loni, E. Askari Asli-Ardeh, B. Ghobadian, G. Najafi, and E. Bellos, “Effects of size and volume fraction of alumina nanoparticles on the performance of a solar organic Rankine cycle,” Energy Conversion and Management, vol. 182, pp. 398-411, Feb. 2019, doi: 10.1016/j.enconman.2018.12.079

R. Loni, G. Najafi, E.A. Asli-Ardeh, B. Ghobadian, W. G. Le Roux, and T. Yusaf, “Performance Investigation of Solar ORC Using Different Nanofluids,” Applied Sciences, vol. 9, 15, pp. 3048, Jul. 2019, doi: 10.3390/app9153048

M.K. Samani, N. Khosravian, G.C.K. Chen, M. Shakerzadeh, D. Baillargeat, and B.K. Tay, “Thermal conductivity of individual multiwalled carbon nanotubes,” International Journal of Thermal Sciences, vol. 62, pp. 40-43, Dec. 2012, doi: 10.1016/j.ijthermalsci.2012.03.003

A. Refiei, R. Loni, G. Najafi, A.Z. Sahin, and E. Bellos, “Effect of use of MWCNT/oil nanofluid on the performance of solar organic Rankine cycle,” Energy Reports, vol. 6, pp. 782-794, Nov. 2020, doi: 10.1016/j.egyr.2020.03.035

B.P. McGrail, P.K. Thallapally, J. Blanchard, S.K. Nune, J.J. Jenks, and L.X. Dang, “Metal-organic heat carrier nanofluids,” Nano Energy, vol. 2, no. 5, pp. 845-855, Sep. 2013, doi: 10.1016/j.nanoen.2013.02.007

G. Cavazzini, S. Bari, P. McGrail, V. Benedetti, G. Pavesi, and G. Ardizzon, “Contribution of metal-organic-heat carrier nanoparticles in a R245fa low-grade heat recovery organic Rankine cycle,” Energy Conversion and Management, vol. 199, pp. 111960, Nov. 2019, doi: 10.1016/j.enconman.2019.111960

S. Artemenko, V. Mazur, and O. Vasilieva, “Thermodynamic and phase behavior of nanofluids,” In: Bulavin, L., Lebovka, N. (eds) Physics of liquid matter: Modern problems, in Springer Proceedings in Physics, vol. 171, pp. 317-333, Jan. 2015, doi: 10.1007/978-3-319-20875-6_12

H. Zhai, Q. An, L. Shi, V. Lemort, and S. Quoilin, “Categorization and analysis of heat sources for organic Rankine cycle systems,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 790-805, Oct. 2016, doi: 10.1016/j.rser.2016.06.076

Z. Hui-Xing, D. Wei, S. Lin, A. Qing-Song, W. Sui-Lin, and A. Bao-Lin, “Theoretical selection criteria of organic Rankine cycle form for different heat sources,” Energy, vol. 238, pp. 122039, Jan. 2022, doi: 10.1016/j.energy.2021.122039

A.S. Chowdhury, and M.M. Ehsan, “A critical overview of working fluids in organic Rankine, supercritical Rankine, and supercritical Brayton cycles under various heat grade sources,” International Journal of Thermofluids, vol. 20, pp. 100426, Nov. 2023, doi: 10.1016/j.ijft.2023.100426




DOI: http://dx.doi.org/10.17977/10.17977/um016v8i22024p253

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats