Characterization of Curcumin as a Coating Material for Polymer-Free Stents in Terms of Morphology and Release

Ameliyana Rizky Syamara Putri Akhmad Yani, Muhammad Kusumawan Herliansyah

Abstract


The use of bare metal stents over the long term often leads to the re-narrowing of blood vessels, prompting a shift to drug-eluting stents (DES). However, the use of polymers in DES has been known to trigger inflammation and thrombosis in the arteries. As an alternative, polymer-free drug-eluting stents (PF-DES) have emerged as a safer option. In this study, curcumin was selected as the primary coating material for PF-DES using the electrophoretic deposition method. The effects of varying curcumin concentrations (125 µg/ml, 250 µg/ml, and 500 µg/ml) were examined to understand their impact on deposition morphology, coating weight, chemical bonding characteristics, and curcumin release using scanning electron microscopy, ultraviolet-visible spectrophotometry, and Fourier transform infrared spectroscopy. The results showed that increasing the amount of curcumin resulted in a heavier and rougher coating, with deposition weights of 573.22 μg/cm², 1198 μg/cm², and 11954 μg/cm², after coated with curcumin concentrations of 125 µg/ml, 250 µg/ml, and 500 µg/ml, respectively. The curcumin release process was comprised of three phases: an initial burst, a slower release, and a second burst, which completed the release over more than 40 days. The efficacy of curcumin as a coating for PF-DES facilitates a controlled and steady release of the drug.

Keywords


Curcumin, DES, EPD, FT-IR, PF-DES, UV-Vis, SEM.

Full Text:

PDF

References


R. Mehra, U. Baber, S.K. Sharma, D.J. Cohen, D.J. Angiolillo, Carlo Briguori et al., “Ticagrelor with or without Aspirin in high-risk patients after PCI,” New England Journal of Medicine, vol. 381, no. 21, pp. 2032–2042, Sep. 2019, doi: 10.1056/nejmoa1908419.

N. Ishaque, N. Naseer, M.A. Abbas, F. Javed, S. Mushtaq, N.M. Ahmad et al., “Optimize PLA/EVA polymers blend compositional coating for next generation biodegradable Drug-Eluting stents,” Polymers, vol. 14, no. 17, p. 3547, Aug. 2022, doi: 10.3390/polym14173547.

J. Zhang, X. Gao, J. Kan, Z. Ge, L. Han, S. Lu et al., “Intravascular ultrasound versus Angiography-Guided Drug-Eluting stent implantation,” Journal of the American College of Cardiology, vol. 72, no. 24, pp. 3126–3137, Sep. 2018, doi: 10.1016/j.jacc.2018.09.013.

P. Jaumaux, Q. Liu, D. Zhou, X. Xu, T. Wang, Y. Wang et al., “Deep‐eutectic‐solvent‐based self‐healing polymer electrolyte for safe and long‐life Lithium‐metal batteries,” Angewandte Chemie International Edition, vol. 59, no. 23, pp. 9134–9142, Feb. 2020, doi: 10.1002/anie.202001793.

B. Ghafoor, M.N. Ali, and Z. Riaz, “Synthesis and appraisal of natural Drug-Polymer-Based matrices relevant to the application of Drug-Eluting Coronary Stent Coatings,” Cardiology Research and Practice, vol. 2020, pp. 1–11, Nov. 2020, doi: 10.1155/2020/4073091.

C. Pucci, C. Martinelli, and G. Ciofani, “Innovative approaches for cancer treatment: current perspectives and new challenges,” Ecancermedicalscience, vol. 13, Sep. 2019, doi: 10.3332/ecancer.2019.961.

M. Bartmanski, B. Cieslik, J. Glodowska, P. Kalka, L. Pawlowski, M. Pieper et al., “Electrophoretic deposition (EPD) of nanohydroxyapatite-nanosilver coatings on Ti13Zr13Nb alloy,” Ceramics International, vol. 43, no. 15, pp. 11820–11829, Jun. 2017, doi: 10.1016/j.ceramint.2017.06.026.

X. Shen, Q. Zheng, and J.-K. Kim, “Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications,” Progress in Materials Science, vol. 115, p. 100708, Jun. 2020, doi: 10.1016/j.pmatsci.2020.100708.

H. Sun, Y. Cao, D. Kim, and B. Marelli, “Biomaterials technology for AgroFood resilience,” Advanced Functional Materials, vol. 32, no. 30, May 2022, doi: 10.1002/adfm.202201930.

M.A. Kumar, S.K. Baba, H.Q. Sadida, S. Al Marzooqi, J. Jerobin, F.H. Altemani et al., “Extracellular vesicles as tools and targets in therapy for diseases,” Signal Transduction and Targeted Therapy, vol. 9, no. 1, Feb. 2024, doi: 10.1038/s41392-024-01735-1.

K.M. Asghari, P. Saleh, Y. Salekzamani, N. Dolatkhah, N. Aghamohammadzadeh, and M. Hashemian, “The effect of curcumin and high-content eicosapentaenoic acid supplementations in type 2 diabetes mellitus patients: a double-blinded randomized clinical trial,” Nutrition and Diabetes, vol. 14, no. 1, Apr. 2024, doi: 10.1038/s41387-024-00274-6.

G.A. Arwati, E.H. Majlan, L.K. Shyuan, T. Husaini, S. Alva, Muhajirin et al., “The influence of temperature and electroforesis deposition green inhibitor on bipolar plate AA5052 in sulfuric acid medium,” Sains Malaysiana, vol. 49, no. 12, pp. 3169–3177, Dec. 2020, doi: 10.17576/jsm-2020-4912-28.

X. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A.S. Al-Bogami, J. Lu et al., “Commercialization of lithium battery technologies for electric vehicles,” Advanced Energy Materials, vol. 9, no. 27, Jun. 2019, doi: 10.1002/aenm.201900161.

E. Korzeniewska, J. Sekulska-Nalewajko, J. Gocławski, R. Rosik, A. Szczęsny, and Z. Starowicz, “Surface morphology analysis of metallic structures formed on flexible textile composite substrates,” Sensors, vol. 20, no. 7, p. 2128, Apr. 2020, doi: 10.3390/s20072128.

J. Hira, A. Manna, P. Gera, R. Sharma, and V. Kumar, “Effect of machining parameters on average surface roughness Ra while turning hybrid Mg-MMC-An experimental approach,” Journal of Physics Conference Series, vol. 1854, no. 1, p. 012044, Apr. 2021, doi: 10.1088/1742-6596/1854/1/012044.

L. Cabernard, L. Roscher, C. Lorenz, G. Gerdts, and S. Primpke, “Comparison of Raman and Fourier Transform infrared spectroscopy for the quantification of microplastics in the aquatic environment,” Environmental Science & Technology, vol. 52, no. 22, pp. 13279–13288, Oct. 2018, doi: 10.1021/acs.est.8b03438.

N. Wang, T. Feng, X. Liu, and Q. Liu, “Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway,” Acta Pharmaceutica, vol. 70, no. 3, pp. 399–409, Feb. 2020, doi: 10.2478/acph-2020-0029.

H.A. Rudayni, M.H. Shemy, M. Aladwani, L.M. Alneghery, G.M. Abu-Taweel, A.A. Allam et al., “Synthesis and biological activity evaluations of green ZNO-decorated acid-activated bentonite-mediated curcumin extract (ZNO@CU/BE) as antioxidant and antidiabetic agents,” Journal of Functional Biomaterials, vol. 14, no. 4, p. 198, Apr. 2023, doi: 10.3390/jfb14040198.

A. Velleca, M.A. Shullo, K. Dhital, E. Azeka, M. Colvin, E. DePasquale et al., “The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients,” The Journal of Heart and Lung Transplantation, vol. 42, no. 5, pp. e1–e141, Dec. 2022, doi: 10.1016/j.healun.2022.10.015.

R. Donate, M. Monzón, and M.E. Alemán-Domínguez, “Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties,” e-Polymers, vol. 20, no. 1, pp. 571–599, Jan. 2020, doi: 10.1515/epoly-2020-0046.

B. Githanadi and M.K. Herliansyah, "Potensi kurkumin sebagai material salutan pada bahan paduan Co-Cr," Thesis, Universitas Gadjah Mada, 2020. [Online]. Available: http://etd.repository.ugm.ac.id/

W. Rosamond, K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase et al., “Heart Disease and Stroke Statistics—2008 update,” Circulation, vol. 117, no. 4, Dec. 2007, doi: 10.1161/circulationaha.107.187998.

F. Fadillah, H. Suryanto, and S. Suprayitno, “Study on effect of 3D printing parameters on surface roughness and tensile strength using analysis of variance,” Journal of Mechanical Engineering Science and Technology (JMEST), vol. 7, no. 2, p. 96, Jul. 2023, doi: 10.17977/um016v7i22023p096.




DOI: http://dx.doi.org/10.17977/um016v9i12025p074

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats