PREDICTION OF SEA LEVEL MEASUREMENT IN PANGPANG BAY FOR SEAPLANE LANDING SEAPLANE LANDING USING ID CONVOLUTIONAL NEURAL NETWORK

Ariyono Setiawan, Fajar Islam, Efendi Efendi, Safitri Era Globalisasi, Jehad A. H Hammad

Abstract


This research investigates the relationship between sea level height and various environmental factors in Pangpang Bay, Indonesia, using Artificial Neural Network (ANN) and Convolutional Neural Network (CNN) modeling techniques. Daily data on sea level height, weather, and oceanography were collected from April 1 to April 15, 2024. An analysis was conducted on the factors affecting sea level height and the evaluation of predictive model performance. The findings reveal historical patterns of sea level height changes influenced by the variability of meteorological and oceanographic conditions. Although ANN and CNN models have varying degrees of accuracy, both show potential in predicting sea level height by considering environmental factors. Recommendations include the development of more advanced predictive models, deeper data observation, integration of multidisciplinary information, continuous environmental monitoring, and stakeholder collaboration. This research is expected to contribute to the understanding and management of environmental risks related to sea level height in Pangpang Bay.

Keywords


sea level height; Pangpang Bay; neural network

Full Text:

PDF

References


Andrews, K., Bowman, A., Rijal, U., Chen, P.-Y., & Zhou, Z. (2020). Improved contacts and device performance in MoS2 transistors using a 2D semiconductor interlayer. ACS Nano, 14(5), 6232–6241.

Aparna, S. G., D’souza, S., & Arjun, N. B. (2018). Prediction of daily sea surface temperature using artificial neural networks. International Journal of Remote Sensing, 39(12), 4214–4231.

Balogun, A.-L., & Adebisi, N. (2021). Sea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracy. Geomatics, Natural Hazards and Risk, 12(1), 653–674.

Boye, C. B., & Amoah, V. I. (2018). Performance evaluation for mean sea level prediction using multivariate adaptive regression spline and artificial neural network. Ghana Mining Journal, 18(1), 1–8.

Chen, J., Xiao, T., Wang, M., Lu, Y., & Tong, M. (2022). Numerical study of wave effect on aircraft water-landing performance. Applied Sciences, 12(5), 2561.

David, C. P., Custado, M. J., Sekhon, N., & Ibarra, D. E. (2022). Forecasting tropical ENSO-induced drought conditions using sea surface height in the Western Pacific. All Earth, 34(1), 55–65.

Eskayudha, D. B., Yamamoto, K., Kanehira, T., Nakashima, T., & Mutsuda, H. (2023). A proposed seaplane float in water entry problem and landing in waves using particle based method. Journal of Advanced Research in Numerical Heat Transfer, 13(1), 31–38.

Fitrianti, N., Haryanto, Y. D., Simamora, E. V. S., Bintari, H. F. A., Hartoko, A., Anggoro, S., & Zainuri, M. (2018). Analysis of daily wind circulation toward sea level rise in Semarang. IOP Conference Series: Earth and Environmental Science, 162(1), 12018.

Gbodjo, Y. J. E., Ienco, D., & Leroux, L. (2021). Benchmarking statistical modelling approaches with multi-source remote sensing data for millet yield monitoring: A case study of the groundnut basin in central Senegal. International Journal of Remote Sensing, 42(24), 9285–9308.

George, T. M., Manucharyan, G. E., & Thompson, A. F. (2021). Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence. Nature Communications, 12(1), 800.

Giezendanner, J., Mukherjee, R., Purri, M., Thomas, M., Mauerman, M., Islam, A. K. M., & Tellman, B. (2023). Inferring the past: A combined CNN-LSTM deep learning framework to fuse satellites for historical inundation mapping. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2155–2165.

Gray, P. C., Chamorro, D. F., Ridge, J. T., Kerner, H. R., Ury, E. A., & Johnston, D. W. (2021). Temporally generalizable land cover classification: A recurrent convolutional neural network unveils major coastal change through time. Remote Sensing, 13(19), 3953.

Grubert, D. A. da V. (2023). A synergistic approach to sugarcane yield forecasting using machine learning, remote sensing, and process-based modeling. Universidade de São Paulo.

Hodson, T. O. (2022). Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions, 2022, 1–10.

Ismail, M. F. A., & Taofiqurohman, A. (2020). Sebaran spasial suhu, salinitas dan densitas di perairan Kepulauan Sangihe Talaud Sulawesi Utara. Jurnal Kelautan Tropis, 23(2), 191–198.

Ispandiari, A. R., Fauzi, I., Kartikasari, D., Sadiah, S., Shabrina, N., & Gutami, N. I. (2022). Identifikasi awal risiko kecelakaan seaplane pada Bandar Udara Perairan. G-Tech: Jurnal Teknologi Terapan, 6(2), 201–210.

Karsavran, Y. (2024). Evaluation of the performance of SVR and ANN Models in Sea Water Level Prediction for the Izmir Coast of the Aegean Sea. International Journal of New Findings in Engineering, Science and Technology, 2(1), 1–7.

Khoirunnisa, H., Wibowo, M., Hendriyono, W., & Wardani, K. S. (2021). Hydrodynamic and boussinesq wave modeling for the N219 amphibious aircraft seaplane dock development plan in Panjang Island. Majalah Ilmiah Pengkajian Industri; Journal of Industrial Research and Innovation, 15(2), 87–96.

Kim, Y. J., Kim, H.-C., Han, D., Lee, S., & Im, J. (2020). Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks. The Cryosphere, 14(3), 1083–1104.

Kourkchi, E., Tully, R. B., Eftekharzadeh, S., Llop, J., Courtois, H. M., Guinet, D., Dupuy, A., Neill, J. D., Seibert, M., & Andrews, M. (2020). Cosmicflows-4: The catalog of∼ 10,000 tully–fisher distances. The Astrophysical Journal, 902(2), 145.

Le, X.-H., Huynh, T. T., Song, M., & Lee, G. (2024). Quantifying predictive uncertainty and feature selection in river bed load estimation: A multi-model machine learning approach with particle swarm optimization. Water, 16(14), 1945.

Muslim, T. O., Ahmed, A. N., Malek, M. A., Abdulmohsin Afan, H., Khaleel Ibrahim, R., El-Shafie, A., Sapitang, M., Sherif, M., Sefelnasr, A., & El-Shafie, A. (2020). Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia. Sustainability, 12(3), 1193.

Ondoa, G. A., Almar, R., Castelle, B., Testut, L., Léger, F., Sohou, Z., Bonou, F., Bergsma, E. W. J., Meyssignac, B., & Larson, M. (2019). Sea level at the coast from video-sensed waves: Comparison to tidal gauges and satellite altimetry. Journal of Atmospheric and Oceanic Technology, 36(8), 1591–1603.

Plevris, V., Solorzano, G., Bakas, N. P., & Ben Seghier, M. E. A. (2022). Investigation of performance metrics in regression analysis and machine learning-based prediction models. 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2022).

Pugh, C. J. (2019). Crystal engineering and structural solutions of organic molecular materials. The University of Liverpool (United Kingdom).

Raj, N., & Gharineiat, Z. (2021). Evaluation of multivariate adaptive regression splines and artificial neural network for prediction of mean sea level trend around Northern Australian coastlines. Mathematics, 9(21), 2696.

Rumani, D. D., Wicaksono, A. W., Wiyono, D. S., & Mardhika, A. (2023). Pemulihan penerbangan dan pengembangan potensi wisata nasional dengan pembangunan water aerodrome. Jurnal Penelitian, 8(2), 175–188.

Schult, D. (1943). Exploring network structure, dynamics, and function using NetworkX.

Sepúlveda, I., Cao, B., Haase, J. S., & Murphy Jr, M. J. (2023). Optimizing Simultaneous water level and wave measurements from multi‐GNSS interferometric reflectometry over 1 year at an exposed coastal site. Earth and Space Science, 10(6), e2022EA002767.

Shabrina, N., Arianto, D., Wardani, K. S., Qonita, Z., Ispandiari, A. R., Gutami, N. I., & Manti, M. F. (2023). Session assessment of seaplane operations: The case of marine tourism development on Gili Iyang Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 1166(1), 12050.

Talke, S. A., & Jay, D. A. (2020). Changing tides: The role of natural and anthropogenic factors. Annual Review of Marine Science, 12(1), 121–151.

Tan, C.-K., Tan, C.-P., & Shaun Wes, N. (2021). Information technology students’ preferences on blended learning. Computational Science and Technology: 7th ICCST 2020, Pattaya, Thailand, 29–30 August, 2020, 91–100.

Tiggeloven, T., Couasnon, A., van Straaten, C., Muis, S., & Ward, P. J. (2021). Exploring deep learning capabilities for surge predictions in coastal areas. Scientific Reports, 11(1), 17224.

Tur, R., Tas, E., Haghighi, A. T., & Mehr, A. D. (2021). Sea level prediction using machine learning. Water, 13(24), 3566.

Wahyu, A., Wiyono, D. S., Mardhika, A., & Parjan, P. (2021). Rencana operasi penerbangan seaplane di Teluk Pang – Pang Banyuwangi dan dampaknya terhadap lingkungan. Jurnal Penelitian, 6(4), 278–291.

Willmott, C. J., & Matsuura, K. (2005). Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82.

Wisha, U. J., Wijaya, Y. J., & Hisaki, Y. (2023). Sea level variability in the equatorial Malacca Strait: The influence of climatic–oceanographic factors and its implications for tidal properties in the estuarine zone. Climate, 11(3), 70.

Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., & Monserrat, S. (2019). Forcing factors affecting sea level changes at the coast. Surveys in Geophysics, 40(6), 1351–1397.

Xie, S., Chen, J., Dixon, T. H., Weisberg, R. H., & Zumberge, M. A. (2021). Offshore sea levels measured with an anchored spar‐buoy system using GPS interferometric reflectometry. Journal of Geophysical Research: Oceans, 126(11), e2021JC017734.

Youssef, A. M., Pradhan, B., Dikshit, A., & Mahdi, A. M. (2022). Comparative study of Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for flood susceptibility mapping: A case study at Ras Gharib, Red Sea, Egypt. Geocarto International, 37(26), 11088–11115.




DOI: http://dx.doi.org/10.17977/um032v7i2p176-195

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Praksis dan Dedikasi Sosial (JPDS)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial and Administration Office:
This Journal is published by Universitas Negeri Malang, under the management of Faculty of Social Science.
Semarang St. No. 5 Building I3, Pos Code: 65145.
Phone. (0341) 551312.
Homepage: http://journal2.um.ac.id/index.php/jpds/index

JPDS Indexed By:

           

E-ISSN 2655-2469


Jurnal Praksis dan Dedikasi Sosial (JPDS) is licensed under Creative Commons Attribution-ShareAlike 4.0 International License,

View JPDS Stats