Performance Comparison of a Rhodamine B Concentration Sensor in Distilled Water Using a Fiber Coupler and Fiber Bundle as a Probe without Direct Contact with the Sample

Samian Samian, Supadi Supadi, Alifiah Qodartin Nisa Budiharjo, Patricia Patricia, Mirna Putri Anggraeni


Detection of the concentration of rhodamine B in distilled water using a fiber coupler and fiber bundle as probes with a static position on the sample surface and not in direct contact with the sample was successfully carried out. The working mechanism of the sensor uses the principle of sample absorption of the light that passes through it. The concave mirror functions as a reflector and a sample container, allowing an undirect contact probe sensor with the sample. Both types of sensors show similar performance. The best detection is shown by sensors that use fiber bundles as probes. The resulting sensitivity and resolution are 2.1 mV/ppm and 0.29 ppm, respectively.

DOI: 10.17977/um024v7i22022p127


fiber coupler; fiber bundle; concave mirror; absorption; rhodamine B.

Full Text:



R. Bernini and A. Cusano, “Generalized Mach–Zehnder interferometers for sensing applications,” Sens. Actuators B: Chem., vol. 100, no. 1–2, pp. 72–74, Jun. 2004, doi: 10.1016/j.snb.2003.12.023.

J. Zhou et al., “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators B: Chem., vol. 208, pp. 315–319, Mar. 2015, doi: 10.1016/j.snb.2014.11.014.

R. Kant, R. Tabassum, and B. D. Gupta, “Fiber optic SPR-based uric acid biosensor using uricase entrapped polyacrylamide gel,” IEEE Photonic Technol. Lett., vol. 28, no. 19, pp. 2050–2053, May 2016, doi: 10.1109/LPT.2016.2571722.

R. Tabassum and B. D. Gupta, “Fiber optic manganese ions sensor using SPR and nanocomposite of ZnO–polypyrrole,” Sens. Actuators B: Chem., vol. 220, pp. 903–909, Dec. 2015, doi: 10.1016/j.snb.2015.06.018.

Samian, A. H. Zaidan, and M. Yasin, “Detection of Rhodamine B levels in distilled water based on displacement sensor using fiber coupler and concave mirror,” J. Optoelectron. Adv. Mater., vol. 18, no. 11–12, pp. 988–992, Nov. 2016.

M. Yasin, Samian, and M. Khasanah, “Detection of magnesium ion concentration using fiber coupler based displacement sensor with concave mirror target,” Opt., vol. 158, pp. 37–43, Apr. 2018, doi: 10.1016/j.ijleo.2017.12.015.

M. Yasin, Samian, and F. N. Aini, “Fiber optic coupler displacement sensor for detection of glucose concentration in distilled water,” Optoelectron. Adv. Mater. Rapid Commun., vol. 10, no. 5–6, pp. 347–350, Jun. 2016.

M. Yasin et al., “Intensity based optical fiber sensors for calcium detection,” J. Optoelectron. Adv. Mater. Rapid Commun., vol. 9, no. 9–10, pp. 1185–1189, Sep. 2015.

H. A. Rahman, S. W. Harun, M. Yasin, and H. Ahmad, “Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror,” IEEE J. Sel. Top. Quantum Electron., vol. 18, no. 5, pp. 1529–1533, Jun. 2011, doi: 10.1109/JSTQE.2011.2159705.

A. H. Zaidan, M. P. Anggraeni, and M. Yasin, “Non‐touch detection of rhodamine B concentration in distilled water using fiber coupler based on displacement sensor,” Microw. Opt. Technol. Lett., vol. 61, no. 1, pp. 223–228, Jan. 2019, doi: 10.1002/mop.31502.

A. H. Zaidan, R. N. Afifah, and M. Yasin, “Touchless mechanism to detect Rhodamine B concentration in distilled water using fiber bundle,” Int. J. Opt., vol. 2019, pp. 1–7, Nov. 2019, doi: 10.1155/2019/5918958.

Y. Jiang et al., “Azo biphenyl polyurethane: Preparation, characterization and application for optical waveguide switch,” Opt. Mater., vol. 75, pp. 858–868, Jan. 2018, doi: 10.1016/j.optmat.2017.12.008.

A. Urrutia, I. D. Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion,” Laser Photonics Rev., vol. 13, no. 11, p. 1900094, Oct. 2019, doi: 10.1002/lpor.201900094.

X. Li et al., “A review of specialty fiber biosensors based on interferometer configuration,” J. Biophotonic, vol. 14, no. 6, p. e202100068, Apr. 2021, doi: 10.1002/jbio.202100068.

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2015–2019),” Anal. Chem., vol. 92, no. 1, pp. 397–430, Oct. 2019, doi: 10.1021/acs.analchem.9b04708.

M. J. Yin et al., “Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications,” Coord. Chem. Rev., vol. 376, pp. 348–392, Dec. 2018, doi: 10.1016/j.ccr.2018.08.001.

N. M. Isa, N. Irawati, H. A. Rahman, and M. H. M. Yusoff, and S. W. Harun, “Polyaniline-doped poly (methyl methacrylate) microfiber for methanol sensing,” IEEE Sens. J., vol. 18, no. 7, pp. 2801–2806, Feb. 2018, doi: 10.1109/JSEN.2018.2802440.

M. Budiyanto, S. W. Harun, and M. Yasin, “Fiber optic displacement sensor for measuring cholesterol concentration,” Sens. Transducers, vol. 217, no. 11, pp. 45–48, Nov. 2017.

Y. Qian, Y. Zhao, Q. L. Wu, and Y. Yang, “Review of salinity measurement technology based on optical fiber sensor,” Sens. Actuators B Chem., vol. 260, pp. 86–105, May 2018, doi: 10.1016/j.snb.2017.12.077.

A. Nag, S. C. Mukhopadhyay, and J. Kosel, “Sensing system for salinity testing using laser-induced graphene sensors,” Sens. Actuators A Phys., vol. 264, pp. 107–116, Sep. 2017, doi: 10.1016/j.sna.2017.08.008.

P. Prasintha et al., “Detection of lubricating oil viscosity based on displacement sensor using fiber coupler and concave mirror,” AIP Conf. Proc., vol. 2314, no. 1, p. 030010, Dec. 2020, doi: 10.1063/5.0034554.

G. Krishnan, M. S. A. Aziz, M. Abdullah, and S. W. Harun, “Concentration measurement of opaque dye solution using a non-contact fiber displacement sensor,” Opt. Fiber Technol., vol. 65, p. 102624, Sep. 2021, doi: 10.1016/j.yofte.2021.102624.

D. Sun, Y. Hao, Y. Fu, and J. Ma, “Organic dye concentration monitoring through an optical microfiber enabled by multiwalled carbon nanotubes,” J. Opt. Soc. Am. B, vol. 38, no. 12, pp. F178–F185, Nov. 2021, doi: 10.1364/JOSAB.433550.

Copyright (c) 2022 Samian Samian, Supadi Supadi, Alifiah Qodartin Nisa Budiharjo, Patricia Patricia, Mirna Putri Anggraeni

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License