The Effects of Potentiostat Scan Rate Variation on Impedance Value, Topography, and Morphology of the Polyaniline Thin Film

Iqomatus Sa'diyah, Nugrahani Primary Putri

Abstract


The effects of potentiostat scan rate on the impedance, topography, and morphology of the Polyaniline (PANi) thin film has observed in this study. PANi has deposited on the Quartz Crystal Microbalance (QCM) surface with various scan rates, and changes in the impedance value have observed through an impedance analyzer test. Topography Measurement System (TMS) has observed the layer topography, while the layer morphology has observed using optical microscopy and Scanning Electron Microscope (SEM). The results have shown that the best sample has a scan rate of 10 mV/s, with a low impedance value indicating the layer has rigid. The variation in scan rate can affect the impedance value, but it is not significant and does not indicate a damping effect on QCM. A homogeneous layer is deposited at a low scan rate from topography and morphological observations, while a high scan rate results in an inhomogeneous layer.

DOI: 10.17977/um024v6i22021p046


Keywords


PANi; scan rate; electropolymerization

Full Text:

PDF

References


A. Aspi, M. B. Malino, and B. P. Lapanporo, “Analisis data spektrum spektroskopi FT-IR untuk menentukan tingkat oksidasi polianilin,” Prima Fis., vol. 1, no. 2, pp. 92–96, 2013, doi: 10.26418/pf.v1i2.3066.

V. Sabatini et al., “A combined XRD, solvatochromic, and cyclic voltammetric study of poly (3,4-Ethylenedioxythiophene) doped with sulfonated polyarylethersulfones: Towards new conducting polymers,” Polymers (Basel)., vol. 10, no. 7, p. 770, 2018, doi: 10.3390/polym10070770.

L. Tiggemann et al., “Low-cost gas sensors with polyaniline film for aroma detection,” J. Food Eng., vol. 180, pp. 16–21, 2016, doi: 10.1016/j.jfoodeng.2016.02.006.

S. Banerjee, D. Konwar, and A. Kumar, “Polyaniline nanofiber reinforced nanocomposite coated quartz crystal microbalance based highly sensitive free radical sensors,” Sensors and Actuators B: Chem., vol. 171–172, pp. 924–931, 2012, doi: 10.1016/j.snb.2012.06.005.

M. H. Shinen, F. O. Essa, and A. S. Naji, “Study the sensitivity of quartz crystal microbalance (QCM) sensor coated with different thickness of polyaniline for determination vapors of ether, chloroform, carbon tetrachloride and ethyl acetate,” Chem. Mater. Res., vol. 6, no. 3, pp. 7–12, 2014.

R. H. Wibawanto and D. Darminto, “Elektropolimerisasi film polianilin dengan metode galvanostatik dan pengukuran laju pertumbuhannya,” JFA (J. Fis. Aplikasinya), vol. 8, no. 1, pp. 1–5, 2012, doi: 10.12962/j24604682.v8i1.859.

H. Karami, M. G. Asadi, and M. Mansoori, “Pulse electropolymerization and the characterization of polyaniline nanofibers,” Electrochim. Acta, vol. 61, pp. 154–164, 2012, doi: 10.1016/j.electacta.2011.11.097.

R. Bagherzadeh, M. Gorji, M. S. S. Bafgi, and N. Saveh-Shemshaki, “Electrospun conductive nanofibers for electronics,” in Electrospun Nanofibers. Duxford, UK: Woodhead Publishing, 2017, ch. 18, pp. 467–519.

M. N. Chomari and D. H. Kusumawati, “Variasi molaritas H2SO4 pada polianilin/H2SO4,” Sains & Matem., vol. 1, no.1, pp. 29–32, 2012.

N. Savest et al., “Electrospun conductive mats from PANi-ionic liquid blends,” J. Electrostat., vol. 96, pp. 40–44, 2018, doi: 10.1016/j.elstat.2018.09.007.

N. K. Jangid, S. Jadoun, and N. Kaur, “A review on high-throughput synthesis, deposition of thin films and properties of polyaniline,” European Polymer J., vol. 125, p. 109485, 2020, doi: 10.1016/j.eurpolymj.2020.109485.

L. A. Didik, Y. Yahdi, and M. Masruroh, “Improvement QCM quality by polystyrene coating and bovine serum albumin as immobilization agent,” J. Ilm. Pendidik. Fis. Al-Biruni, vol. 8, no. 1, pp. 35–41, 2019, doi: 10.24042/jipfalbiruni.v8i1.3716.

Rouhillah, M. Rivai, and T. A. Sardjono, “Karakterisasi frekuensi harmonisa sensor quartz crystal microbalance sebagai identifikasi gas,” in Pros. SENTIA 2015, Malang, Indonesia, vol. 7, 2015, pp. 66–71.

F. Wahyuni, S. P. Sakti, U. P. Juswono, F. Irawati, and N. Chabi, “Design of cell construction for immunosensor based quartz crystal microbalance (QCM),” Natural B: J. Health and Environt. Sci., vol. 1, no. 4, pp. 305–311, 2012, doi: 10.21776/ub.natural-b.2012.001.04.2.

S. P. Sakti, E. R. N. Akbar, D. D. Kamasi, and A. Naba, “Impedance measurement of the quartz crystal microbalance using phase gain detector and digital storage oscilloscope,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 546, no. 4, p. 042040, 2019, doi: 10.1088/1757-899X/546/4/042040.

G. C. DeNolf et al., “High frequency rheometry of viscoelastic coatings with the quartz crystal microbalance,” Langmuir, vol. 27, no. 16, pp. 9873–9879, 2011, doi: 10.1021/la200646h.

N. P. Putri et al., “Solvent effect on viscoelastic behaviour and morphology of polyaniline coating at QCM sensor,” in J. Phys.: Conf. Ser., vol. 1417, p. 012002, 2019, doi: 10.1088/1742-6596/1417/1/012002.

E. I. P. Rahayu and N. P. Putri, “The effect of solution concentration and deposition time on viscoelasticity and morphology of polyaniline coating,” J. Phys.: Conf. Ser., vol. 1491, p. 012050, 2020, doi: 10.1088/1742-6596/1491/1/012050.

D. Sazou, M. Kourouzidou, and E. Pavlidou, “Potentiodynamic and potentiostatic deposition of polyaniline on stainless steel: Electrochemical and structural studies for a potential application to corrosion control,” Electrochim. Acta, vol. 52, no. 13, pp. 4385–4397, 2007, doi: 10.1016/j.electacta.2006.12.020.

L. A. Didik, E. Rahmawati, F. Robiandi, S. Rahayu, and D. J. D. H. Santjojo, “Determination of Polystyrene Layer Thickness and Zinc Phthalocyanine (ZnPc) with modified sauerbrey equations and scanning electron microscope (SEM),” Natural B: J. Health and Evinront. Sci., vol. 2, no. 4, pp. 331–335, 2014, doi: 10.21776/ub.natural-b.2014.002.04.6.

J. Fernández, J. Bonastre, J. Molina, A. I. Del-Río, and F. Cases, “Study on the specific capacitance of an activated carbon cloth modified with reduced graphene oxide and polyaniline by cyclic voltammetry,” Eur. Polym. J., vol. 92, pp. 194–203, 2017, doi: 10.1016/j.eurpolymj.2017.04.044.

N. Carrillo et al., “Enzymatically synthesized polyaniline film deposition studied by simultaneous open circuit potential and electrochemical quartz crystal microbalance measurements,” J. Colloid and Interface Sci., vol. 369, no. 1, pp. 103–110, 2012, doi: 10.1016/j.jcis.2011.12.021.

S. Bilal, A. Akbar, and A. H. A. Shah, “Highly selective and reproducible electrochemical sensing of ascorbic acid through a conductive,” Polym., vol. 11, no. 8, p. 1346, 2019, doi: 10.3390/polym11081346.

J. Y. Lin, W. Y. Wang, and Y. T. Lin, “Characterization of polyaniline counter electrodes for dye-sensitized solar cells,” Surf. Coatings Technol., vol. 231, pp. 171–175, 2013, doi: 10.1016/j.surfcoat.2012.06.039.

L. E. Arisanti, N. P. Putri, and Munasir “Studi reversibilitas lapisan tipis polianilin hasil elektropolimerisasi,” J. Fis., vol. 04, no. 01, pp. 10–13, 2015.

S. W. Fitriani, Masruroh, and S. P. Sakti, “Pengaruh ketebalan lapisan zinc phthalocynine (ZnPc) di atas permukaan polistiren/QCM terhadap sifat viskoelastis berdasarkan nilai impedansi,” Brawijaya Phys. Student J., vol. 2, no.1, 2014.

S. P. Sakti, N. F. Khusnah, D. J. D. H. Santjojo, Masruroh, and A. Sabarudin, “Surface modification of polystyrene coating on QCM sensor using ambient air plasma at low pressure,” Mater. Today Proc., vol. 5, no. 7, pp. 15149–15154, 2018, doi: 10.1016/j.matpr.2018.04.073.

S. P. Sakti, E. Rahmawati, and F. Robiandi, “Solvent effect on polystyrene surface roughness on top of QCM sensor,” AIP Conf. Proc., vol. 1719, p. 030017, 2016, doi: 10.1063/1.4943712.




Copyright (c) 2021 Iqomatus Sa'diyah, Nugrahani Primary Putri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License