Automatic Excitation Control Using PI Method Based on Analysis Root Locus for Synchronous Generator

Alwy Muhammad Ravi, Anggara Trisna Nugraha

Abstract


The demand for electrical energy is increasing (at 2–3 percent per year). It is necessary to utilize the energy available in nature optimally and stably to fulfill electricity needs. Synchronous generators have an essential role in fulfilling electricity needs. Maintaining and improving the operational stability of the synchronous generator is fundamental to the safe and economical operation of an electric power system. The use of control methods to increase control excitation is recognized as an economical and effective way. Previous research shows there are still areas for improvement in the excitation control method. Thus, this research focuses on optimizing the automatic excitation system using the PI control method with stability analysis using the root locus. The effect of PI control on the results of the characteristics response has Tr is 1.9 s, Ts is 6.6 s, Mp is 38.95 percent, and Ess is 11.02 percent. While the generator excitation current will increase in line with the increase in load current, and the resulting output voltage will be stable with errors that occur when compared to the nominal voltage is 10.51 percent because the sensor reading is affected by a frequency that is not following the operating frequency.

DOI: 10.17977/um024v8i12023p036


Keywords


synchronous generator; PI control; excitation system; root locus

Full Text:

PDF

References


Suharyati, S. H. Pambudi, J. L. Wibowo, and N. I. Pratiwi, Indonesia Energy Outlook 2019. Jakarta, Indonesia: Secretariat General of the National Energy Council, Sep. 2019.

I. Boldea, Electric Generators Handbook: Synchronous Generators, 2nd ed. Florida, USA: CRC Press, Sep. 2015.

Y. A. Ahmed, Y. I. Al-Mashhadany, and M. A. Nayyef, “High performance of excitation system for synchronous generator based on modeling analysis,” Bull. Electr. Eng. Inform., vol. 9, no. 6, pp. 2235–2243, Dec. 2020, doi: 10.11591/eei.v9i6.2627.

J. Li, Design and Application of Modern Synchronous Generator Excitation Systems. Singapore: John Wiley & Sons, 2019.

D. Jiang et al., “Research on excitation system of synchronous generator,” J. Phys.: Conf. Ser., vol. 1607, no. 1, p. 012040, Aug. 2020, doi: 10.1088/1742-6596/1607/1/012040.

A. A. Bhutto, F. A. Chachar, M. Hussain, D. K. Bhutto, and S. E. Bakhsh, “Implementation of probabilistic neural network (PNN) based automatic voltage regulator (AVR) for excitation control system in Matlab,” in 2019 2nd Int. Conf. Comput. Math. Eng. Technol. (iCoMET), Sukkur, Pakistan, Mar. 2019, pp. 1–5, doi: 10.1109/ICOMET.2019.8673416.

D. W. Pribadi, E. Wahjono, and I. Ferdiansyah, “Optimizing of synchronous generator voltage stability with CUK converter as an excitation control system,” in 2020 Int. Conf. Electr. Eng. Inform. (ICELTICs), Aceh, Indonesia, Oct. 2020, pp. 1–6, doi: 10.1109/ICELTICs50595.2020. 9315443.

A. M. Hemeida et al., “TCSC with auxiliary controls based voltage and reactive power controls on grid power system,” Ain Shams Eng. J., vol. 11, no. 3, pp. 587–609, Sep. 2020, doi: 10.1016/j. asej.2019.10.015.

A. T. N. Angga et al., “Use Of ACS 712ELC-5A current sensor on overloaded load installation safety system,” Appl. Technol. Comput. Sci. J., vol. 4, no. 1, pp. 47–55, Jul. 2021, doi: 10.33086/ atcsj.v4i1.2088.

M. S. Fahmi and Irwanto, “Supplay eksitasi output generator 300 Mw menggunakan metode pola titik daya reaktif,” J. Tek. Mesin Mekatronika (J. Mech. Eng. Mechatron.), vol. 5, no. 1, pp. 11–20, Apr. 2020, doi: 10.33021/jmem.v5i1.983.

E. C. Lister, Mesin dan Rangkaian Listrik, 6th ed. Jakarta, Indonesia: Erlangga, 1998.

A. T. Nugraha and D. Priyambodo, “Prototype hybrid power plant of solar panel and vertical wind turbine as a provider of alternative electrical energy at Kenjeran beach Surabaya,” J. Electr., Electromed. Eng. Med. Inform., vol. 2, no. 3, pp. 108–113, Oct. 2020, doi: 10.35882/jeeemi. v2i3.4.

D. Dewatama, M. Fauziah, and K. H. Safitri, “Kendali DC-DC converter pada portable pico-hydro menggunakan PID kontroller,” J. Eltek, vol. 16, no. 2, pp. 113–124, Oct. 2018, doi: 10.33795/eltek.v16i2.103.

A. T. Nugraha, M. Z. A. Tiwana, and A. M. Ravi, “Analisis optimalisasi manajemen daya chiller untuk rencana AC sentral industri,” J. Janitra Inform. Sist. Inf., vol. 1, no. 1, pp. 35–46, Apr. 2021, doi: 10.25008/janitra.v1i1.106.

L. Ljung, A. A. Ozdemir, and R. Singh, “Online features in the MATLAB® system identification ToolboxTM,” IFAC-PapersOnLine, vol. 51, no. 15, pp. 700–705, Jul. 2018, doi: 10.1016/j.ifacol. 2018.09.201.

T. D. Pamungkas, U. Sutisna, and Y. R. Fauzan, “Penerapan algoritma fuzzy untuk optimasi kontroler PID pada sistem kontrol AVR generator 3 fasa 480VA berbasis mikrokontroler ATMega16,” Iteks, vol. 10, no. 2, Nov. 2018.

L. Ljung, C. Andersson, K. Tiels, and T. B. Schön, “Deep learning and system identification,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1175–1181, Jul. 2020, doi: 10.1016/j.ifacol.2020.12.1329.

Y. Naung, A. Schagin, H. L. Oo, K. Z. Ye, and M. Z. Khaing, “Implementation of data driven control system of DC motor by using system identification process,” in 2018 IEEE Conf. Rus. Young Res. Electr. Electron. Eng. (EIConRus), Moscow and St. Petersburg, Russia, Jan. 2018, pp. 1801–1804, doi: 10.1109/EIConRus.2018.8317455.

K. Ogata and E. Leksono, Teknik Kontrol Automatik (Sistem Pengaturan). Jakarta, Indonesia: Erlangga, 1995.

F. Asadi, R. E. Bolanos, and J. Rodríguez, Feedback Control Systems: The MATLAB®/Simulink® Approach. Switzerland: Springer Nature, 2022.




DOI: http://dx.doi.org/10.17977/um024v8i12023p036

Copyright (c) 2023 Alwy Muhammad Ravi and Anggara Trisna Nugraha

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License