Investigation of Structures, Vibrational Spectra, and Morphological Characteristics of Undoped and Cobalt-doped Ni-Zn Ferrite

Joko Utomo, Robi Kurniawan, Muhammad Reyza Arief Taqwa, Bakhrul Rizky Kurniawan, Nur Elma Ayu Wahyuni, Adulsman Sukkaew


Undoped and Co-doped Nickel Zinc ferrite (NiZnFe2O4) have been successfully prepared using the coprecipitation method with the further annealing treatment at 600 ºC. The structure, image, and vibrational spectra of the materials were investigated respectively by XRD, TEM, and FTIR characterizations. Based on XRD characterization results, both undoped and Co-doped Ni – Zn ferrite possesses a single-phase formation, namely spinel structure without any impurities from other phases. The lattice parameters of Co-doped Ni – Zn ferrite is 8.419 nm which is higher than undoped Ni – Zn ferrite (8.409 nm). Meanwhile, the average particle size obtained based on the results of the TEM characterization is 14.4 nm with slight agglomeration. The results of FTIR characterization on all samples provide information on the presence of metal ion vibrations at frequency bands about 493.78 cm-1 located at the tetrahedral and 514.99 cm-1 occupied at octahedral sites. Those frequency ranges confirmed that both samples have spinel structures.

DOI: 10.17977/um024v7i12022p051


Ni-Zn ferrite; Co-doped; ferrite; coprecipitation

Full Text:



A. Manohar, C. Krishnamoorthi, C. Pavithra, and N. Thota, “Magnetic Hyperthermia and Photocatalytic Properties of MnFe2O4 Nanoparticles Synthesized by Solvothermal Reflux Method,” J. Supercond. Nov. Magn., vol. 34, no. 1, pp. 251–259, 2021, doi: 10.1007/s10948-020-05685-x.

G. S. Shahane, A. Kumar, M. Arora, R. P. Pant, and K. Lal, “Synthesis and characterization of Ni-Zn ferrite nanoparticles,” J. Magn. Magn. Mater., vol. 322, no. 8, pp. 1015–1019, 2010, doi: 10.1016/j.jmmm.2009.12.006.

S. Zhao, C. Wang, and B. Zhong, “Optimization of electromagnetic wave absorbing properties for Ni-Co-P/GNs by controlling the content ratio of Ni to Co,” J. Magn. Magn. Mater., vol. 495, no. August 2019, p. 165753, 2020, doi: 10.1016/j.jmmm.2019.165753.

P. L. Leng, M. G. Naseri, E. Saion, A. H. Shaari, and M. A. Kamaruddin, “Synthesis and Characterization of Ni-Zn Ferrite Nanoparticles by Thermal Treatment Method,” Adv. Nanoparticles, vol. 02, no. 04, pp. 378–383, 2013, doi: 10.4236/anp.2013.24052.

A. Yadav and D. Varshney, “Structural and Dielectric Properties of Copper-Substituted Mg–Zn Spinel Ferrites,” J. Supercond. Nov. Magn., vol. 30, no. 5, pp. 1297–1302, 2017, doi: 10.1007/s10948-016-3931-2.

S. B. Gopale, G. N. Kakade, G. D. Kulkarni, V. Vinayak, S. P. Jadhav, and K. M. Jadhav, “X-ray diffraction, infrared and magnetic studies of NiFe2O4 nanoparticles,” J. Phys. Conf. Ser., vol. 1644, no. 1, 2020, doi: 10.1088/1742-6596/1644/1/012010.

A. Kumar, N. Yadav, D. S. Rana, P. Kumar, M. Arora, and R. P. Pant, “Structural and magnetic studies of the nickel doped CoFe2O4 ferrite nanoparticles synthesized by the chemical co-precipitation method,” J. Magn. Magn. Mater., vol. 394, pp. 379–384, Nov. 2015, doi: 10.1016/J.JMMM.2015.06.087.

M. A. Ali, M. M. Uddin, M. N. I. Khan, F. U. Z. Chowdhury, S. M. Hoque, and S. I. Liba, “Magnetic properties of Sn-substituted Ni-Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2,” Chinese Phys. B, vol. 26, no. 7, 2017, doi: 10.1088/1674-1056/26/7/077501.

J. Bobic, M. Vijatovic-Petrovic, and B. Stojanovic, “Aurivillius BaBi4Ti4O15 based compounds: Structure, synthesis and properties,” Process. Appl. Ceram., vol. 7, no. 3, pp. 97–110, 2013, doi: 10.2298/pac1303097b.

Z. C. Zhong et al., “Influence of Nd substitution on the structural, magnetic and electrical properties of NiZnCo ferrites,” Ceram. Int., vol. 47, no. 7, pp. 8781–8786, 2021, doi: 10.1016/j.ceramint.2020.11.243.

J. A. Hwang, M. Choi, H. S. Shin, B. K. Ju, and M. P. Chun, “Structural and magnetic properties of NiZn ferrite nanoparticles synthesized by a thermal decomposition method,” Appl. Sci., vol. 10, no. 18, 2020, doi: 10.3390/APP10186279.

L. Z. Li, X. X. Zhong, R. Wang, X. Q. Tu, and L. He, “Effects of Al substitution on the properties of NiZnCo ferrite nanopowders,” J. Mater. Sci. Mater. Electron., vol. 29, no. 9, pp. 7233–7238, 2018, doi: 10.1007/s10854-018-8712-1.

A. Maqsood, K. Khan, M. Anis-Ur-Rehman, and M. A. Malik, “Spectroscopic and magnetic investigation of NiCo nanoferrites,” J. Alloys Compd., vol. 509, no. 27, pp. 7493–7497, 2011, doi: 10.1016/j.jallcom.2011.04.092.

E. Leal et al., “Structural, textural, morphological, magnetic and electromagnetic study of Cu-doped NiZn ferrite synthesized by pilot-scale combustion for RAM application,” Arab. J. Chem., vol. 13, no. 11, pp. 8100–8118, 2020, doi: 10.1016/j.arabjc.2020.09.041.

C. Virlan, F. Tudorache, and A. Pui, “Tertiary NiCuZn ferrites for improved humidity sensors: A systematic study,” Arab. J. Chem., vol. 13, no. 1, pp. 2066–2075, 2020, doi: 10.1016/j.arabjc.2018.03.005.

P. Chavan, L. R. Naik, P. B. Belavi, G. Chavan, C. K. Ramesha, and R. K. Kotnala, “Studies on Electrical and Magnetic Properties of Mg-Substituted Nickel Ferrites,” J. Electron. Mater., vol. 46, no. 1, pp. 188–198, 2017, doi: 10.1007/s11664-016-4886-6.

J. Utomo, A. K. Agustina, E. Suharyadi, T. Kato, and S. Iwata, “Effect of Co concentration on crystal structures and magnetic properties of Ni1-xCoxFe2O4 nanoparticles synthesized by co-precipitation method,” Integr. Ferroelectr., vol. 187, no. 1, pp. 194–202, 2018, doi: 10.1080/10584587.2018.1445348.

L. Z. Li, X. Q. Tu, R. Wang, and L. Peng, “Structural and magnetic properties of Cr-substituted NiZnCo ferrite nanopowders,” J. Magn. Magn. Mater., vol. 381, pp. 328–331, 2015, doi: 10.1016/j.jmmm.2015.01.020.

Y. K. Dasan, B. H. Guan, M. H. Zahari, and L. K. Chuan, “Influence of La3+ substitution on structure, morphology and magnetic properties of nanocrystalline Ni-Zn ferrite,” PLoS One, vol. 12, no. 1, pp. 1–14, 2017, doi: 10.1371/journal.pone.0170075.

S. C. Endres, L. C. Ciacchi, and L. Mädler, “A review of contact force models between nanoparticles in agglomerates, aggregates, and films,” J. Aerosol Sci., vol. 153, p. 105719, Mar. 2021, doi: 10.1016/J.JAEROSCI.2020.105719.

J. Utomo, A. K. Agustina, and E. Suharyadi, “Annealing temperature effect on structural, vibrational and optical properties of Co0.8Ni0.2Fe2O4 nanoparticles,” IOP Conf. Ser. Mater. Sci. Eng., vol. 432, no. 1, pp. 0–7, 2018, doi: 10.1088/1757-899X/432/1/012033.

Copyright (c) 2022 Joko Utomo, Robi Kurniawan, Muhammad Reyza Arief Taqwa, Bakhrul Rizky Kurniawan, Nur Elma Ayu Wahyuni, Ajarn Adulsman Sukkaew

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License