Detection of Lahar Flow Direction from Semeru Eruption on 4 December 2021 using Gravity Method
Abstract
Mount Semeru, an active, steep-sided volcano in East Java, erupted on 4 December 2021 following extreme rainfall that led to an avalanche of hot pyroclastic flows and lahars. Besides a debatable eruption source with no preceding seismic signals observed, it has drawn the international community's attention for its extent of largely impacted areas down the summit. In this study, we used gravity method modeling of the local anomaly in density distribution after the event to determine the unique pattern of the lahar flow direction with the corresponding extent and the spread of the flow. The data were collected from a TOPEX satellite altimeter and processed using a number of specific techniques to obtain a contoured map of local anomaly. The results showed that the main path of the flow was found to descend down the slope to the southeast of the crater, extending to a distance of about 20 km with a maximum lahar flow width of about 2 km toward agricultural lands and populated areas, consistent with the high-resolution satellite imagery produced by UNOSAT-UNITAR. It suggests that gravity anomaly could be used to simulate the flow pattern and the widespread damage of volcanic materials after an eruption.
Keywords
Full Text:
PDFReferences
C. Gomez, F. Lavigne, D. S. Hadmoko, and P. Wassmer, “Insights into lahar deposition processes in the Curah Lengkong (Semeru Volcano, Indonesia) using photogrammetry-based geospatial analysis, near-surface geophysics and CFD modelling,” J. Volcanol. Geotherm. Res., vol. 353, pp. 102–113, 2018, doi: 10.1016/j.jvolgeores.2018.01.021.
A. Loeqman et al., Gunung Api Indonesia dan Karakteristik Bahayanya. Bandung, Indonesia: Pusat Vulkanologi dan Mitigasi Bencana Geologi, 2020.
J. C. Thouret, F. Lavigne, H. Suwa, B. Sukatja, and Surono, “Volcanic hazards at Mount Semeru, East Java (Indonesia), with emphasis on lahars,” Bull. Volcanol., vol. 70, no. 2, pp. 221–244, 2007, doi: 10.1007/s00445-007-0133-6.
Fahrudin, A. S. Hidayatullah, and M. J. Maulana, “Tectonic relationships and structural development between Arjosari, Pacitan, East Java and Tawangmangu, Karanganyar, Central Java,” in The 1st Int. Conf. Geodesy Geomat. Land Adm. 2019, pp. 47–56, 2019, doi: 10.18502/keg. V 4i3.5822.
A. Solikhin, J. C. Thouret, A. Gupta, A. J. L. Harris, and S. C. Liew, “Geology, tectonics, and the 2002–2003 eruption of the Semeru volcano, Indonesia: interpreted from high-spatial resolution satellite imagery,” Geomorphology, vol. 138, no. 1, pp. 364–379, 2012, doi: 10.1016/j.geomorph.2011.10.001.
C. C. A. Starheim, C. Gomez, T. Davies, F. Lavigne, and P. Wassmer, “In-flow evolution of lahar deposits from video-imagery with implications for post-event deposit interpretation, Mount Semeru, Indonesia,” J. Volcanol. Geotherm. Res., vol. 256, pp. 96–104, 2013, doi: 10.1016/j.jvolgeores.2013.02.013.
Wikipedia. “2021 Semeru eruption.” en.wikipedia.org. https://en.wikipedia.org/wiki/2021_ Semeru_eruption (accessed July 13, 2022).
The United Nations Office for the Coordination of Humanitarian Affairs (OCHA). “Indonesia: Semeru Volcano - Dec 2021.” reliefweb.int. https://reliefweb.int/disaster/vo-2021-000194-idn (accessed July 13, 2022).
L. J. Connor, C. B. Connor, K. Meliksetian, and I. Savov, “Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia,” J. Appl. Volcanol., vol. 1, no. 3, pp. 1–19, 2012, doi: 10.1186/2191-5040-1-3.
T. C. Pierson, N. J. Wood, and C. L. Driedger, “Reducing risk from lahar hazards: concepts, case, studies, and roles for scientists,” J. Appl. Volcanol., vol. 3, no. 16, pp. 1–25, 2014, doi: 10.1186/s13617-014-0016-4.
A. Simpson, R. W. Johnson, and P. Cummins, “Volcanic threat in developing countries of the Asia–Pacific region: probabilistic hazard assessment, population risks, and information gaps,” Nat. Hazards, vol. 57, pp. 151–165, 2011, doi: 10.1007/s11069-010-9601-y.
P. R. Cummins, “Geohazards in Indonesia: Earth science for disaster risk reduction–introduction,” Geol. Soc. Spec. Publ., vol. 441, pp. 1–7, 2017, doi: 10.1144/SP441.
P. Maghfira and S. Niasari, “Gravity satellite data analysis for subsurface modelling in Mount Merapi-Merbabu, Java, Indonesia,” E3S Web Conf., vol. 76, p. 03003, 2019, doi: 10.1051/e3sconf/20197603003.
D. Santoso et al., “Gravity structure around Mt. Pandan, Madiun, East Java, Indonesia and its relationship to 2016 seismic activity,” Open Geosci., vol. 10, no. 1, pp. 882–888, 2018, doi: 10.1515/geo-2018-0069.
S. Okubo, “Advances in gravity analyses for studying volcanoes and earthquakes,” Proc. Jpn. Acad., Ser. B Phys. Biol. Sci., vol. 96, no. 2, pp. 50–69, 2020, doi: 10.2183%2Fpjab.96.005.
Y. Ming et al., “Application of gravity exploration in urban active fault detection,” IOP Conf. Ser. Earth Environ. Sci., vol. 660, p. 012057, 2021, doi: 10.1088/1755-1315/660/1/012057.
B. K. Amoah, I. Dadzie, and K. T. Kyeremeh, “Integrating gravity and magnetic field data to delineate structurally controlled gold mineralization in the Sefwi Belt of Ghana,” J. Geophys. Eng., vol. 15, no. 4, pp. 1197–1203, 2018, doi: 10.1088/1742-2140/aaa7b2.
B. Dinçer and V. Işik, “Determination of structural characteristics of Tuzgölü Fault Zone using gravity and magnetic methods, Central Anatolia,” Bull. Miner. Res. Explor., vol. 162, no. 162, pp. 145–174, 2020, doi: 10.19111/bulletinofmre.661245.
M. Lupi et al., “Northward migration of the Javanese volcanic arc along thrust faults,” Earth Planet. Sci. Lett., vol. 577, p. 117258, 2022, doi: 10.1016/j.epsl.2021.117258.
Directorate of Population and Employment Statistics, “Hasil Sensus Penduduk 2020,” Indonesian Bureau of Statistic, Jakarta, Indonesia, Berita Resmi Statistik No. 7/01/Th. XXIV, Jan. 2021.
L. D. Setijadji, S. Kajino, A. Imai, and K. Watanabe, “Cenozoic Island arc magmatism in Java Island (Sunda Arc, Indonesia): Clues on relationships between geodynamics of volcanic centers and ore mineralization,” Resour. Geol., vol. 56, no. 3, pp. 267–292, 2006, doi: 10.1111/j.1751-3928.2006. tb00284. X.
H. R. Smyth, R. Hall, and G. J. Nichols, “Cenozoic volcanic arc history of East Java, Indonesia: the stratigraphic record of eruptions on an active continental margin,” Geol. Soc. Am. Spec. Pap., vol. 436, pp. 199–222, 2008, doi: 10.1130/2008.2436(10).
A. Susilo and Z. Adnan, “Probabilistic seismic hazard analysis of East Java region, Indonesia,” Int. J. Comput. Electr. Eng., vol. 5, no. 3, pp. 341–344, 2013, doi: 10.7763/IJCEE. 2013.V5.728.
A. Y. Al-Hakim and B. Sulistijo, “Integrated exploration method to determine Cu prospect in Seweden district, Blitar, East Java,” Proc. Earth Planet. Sci., vol. 6, pp. 64–69, 2013, doi: 10.1016/j.proeps.2013.01.009.
A. A. Martha, P. Cummins, E. Saygin, S. Widiyantoro, and Masturyono, “Imaging of upper crustal structure beneath East Java–Bali, Indonesia with ambient noise tomography,” Geosci. Lett., vol. 4, no. 1, p. 14, 2017, doi: 10.1186/s40562-017-0080-9.
A. Špičák, V. Hanuš, and J. Vaněk, “Earthquake occurrence along the Java trench in front of the onset of the Wadati-Benioff zone: Beginning of a new subduction cycle?,” Tectonics, vol. 26, no. 1, pp. 1–16, 2007, doi: 10.1029/2005TC001867.
A. N. Nugraha et al., “Hypocenter relocation along the Sunda Arc in Indonesia, using a 3D seismic-velocity model,” Seismol. Res. Lett., vol. 89, no. 2A, pp. 603–612, 2018, doi: 10.1785/0220170107.
S. Widiyantoro et al., “Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia,” Sci. Rep., vol. 10, p. 15274, 2020, doi: 10.1038/s41598-020-72142-z.
S. J. Hutchings and W. D. Mooney, “The seismicity of Indonesia and tectonic implications,” Geochem. Geophys. Geosyst., vol. 22, no. 9, pp. 1–42, 2021, doi: 10.1029/2021GC009812.
N. Nguyen, J. Griffin, A. Cipta, and P. R. Cummins, “Indonesia’s historical earthquakes: modelled examples for improving the national hazard map,” Geoscience Australia, pp. 1–79, 2015, doi: 10.11636/Record.2015.023.
A. Koulali et al., “The kinematics of crustal deformation in Java from GPS observations: implications for fault slip partitioning,” Earth Planet Sci. Lett., vol. 458, pp. 69–79, 2017, doi: 10.1002/2016GL067941.
A. Koulali et al., “Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc,” Geophys. Res. Lett., vol. 43, no. 5, pp. 1943–1949, 2016, doi: 10.1002/2016 GL067941.
Ilapadila, B. Harimei, and Maria, “Analysis of regional anomaly on magnetic data using the upward continuation method,” IOP Conf. Ser. Earth Environ. Sci., vol. 297, no. 1, p. 012037, 2019, doi: 10.1088/1755-1315/279/1/012037.
H. Kebede, A. Alemu, and S. Fisseha, “Upward continuation and polynomial trend analysis as a gravity data decomposition, case study at Ziway-Shala basin, central Main Ethiopian rift,” Heliyon, vol. 6, no. 1, p. e03292, 2020, doi: 10.1016/j. heliyon. 2020. e03292.
I. Setiadi, Marjiyono, and T. B. Nainggolan, “Gravity data analysis based on optimum upward continuation filter and 3D inverse modelling (case study at sedimentary basin in volcanic region Malang and its surrounding area, East Java),” IOP Conf. Ser. Earth Environ. Sci., vol. 873, no. 1, p. 012008, 2021, doi: 10.1088/1755-1315/873/1/012008.
I. Setiadi, J. Widodo, and T. B. Nainggolan, “Geological interpretation of offshore Central Sumatra basin using TOPEX satellite gravity data,” IOP Conf. Ser. Earth Environ. Sci., vol. 944, no. 1, p. 012034, 2021, doi: 10.1088/1755-1315/944/1/012034.
W. J. Hinze, R. R. B. von Frese, and A. H. Saad, Gravity and Magnetic Explorations: Principles, Practices, And Applications. Cambridge, United Kingdom: Cambridge Uni Press, pp. 1–512, 2013, doi: 10.1017/CBO9780511843129.
D. Ravat, “Upward and downward continuation,” in Encyclopedia of Geomagnetism and Paleomagnetism, D. Gubbins and E. H. Bervera, Eds., Cham, Switzerland: Springer, pp. 974-976, 2007, doi: 10.1007/978-1-4020-4423-6_311.
M. Pilkington and O. Boulanger, “Potential field continuation between arbitrary surfaces–Comparing methods,” Geophys., vol. 82, no. 3, pp. 9–25, 2017, doi: 10.1190/geo2016-0210.1.
Copyright (c) 2022 Arie Realita, Muhammad Nurul Fahmi, Tjipto Prastowo, Madlazim Madlazim
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License