Physical and Mechanical Properties of Fiber Board from Corn Husk Fiber

Rita Desiasni, Fauzi Widyawati, Yuliana Fitri Sersaningsih, Syamsul Bahtiar, Amirin Kusmiran


Using agricultural waste materials, namely corn husk fiber (CHF), to reduce agricultural waste and recycle corn husk waste into sustainable engineering materials is relatively significant due to the decreasing number of woods. This study aims to analyze the effect of the volume fraction of CHF with polyester (PE) on the physical and mechanical strength of fiberboard composites with variations in volume fraction of 25  percent fiber : 75 percent PE, 50 percent fiber : 50 percent PE, and 75 percent fiber : 25 percent PE. Composites are made by the hand layup method. Fibers were pretreated by immersing 5 percent NaOH for 2 hours. The results of testing the physical properties of the highest density composite board at a volume fraction of 25 percent fiber : 75 percent PE of 0.85 g/cm³ and the lowest moisture absorption value was at 0.49 percent. The results of the mechanical board test in the form of the modulus of elasticity (MOE) test got the highest test value at the fiber volume fraction 25 percent fiber : 75 percent PE, which was 1179.2 MPa as well as the highest modulus of rupture (MOR) test value was found in the volume fraction 25 percent fiber: 75 percent PE that is equal to 9.4 MPa. Based on this result research, the average strength of the mechanical properties increases with the increase in the number of matrices. That indicates a reasonably good bond between the fiber and the matrix. The results of the water content test also increased as the density value increased.

DOI: 10.17977/um024v7i22022p134


corn husk fiber; polyester resin; hand layup method; physical and mechanical properties

Full Text:



R. A. Ilyas, S. M. Sapuan, and M. R. Ishak, “Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata),” Carbohydr. Polym., vol. 181, pp. 1038–1051, Feb. 2018, doi: 10.1016/j.carbpol.2017.11.045.

M. R. Pelaez-Samaniego, V. Yadama, E. Lowell, and R. Espinoza-Herrera, “A review of wood thermal pretreatments to improve wood composite properties,” Wood Sci. Technol., vol. 47, no. 6, pp. 1285–1319, Jul. 2013, doi: 10.1007/s00226-013-0574-3.

S. Schiavoni, F. Bianchi, and F. Asdrubali, “Insulation materials for the building sector: A review and comparative analysis,” Renew. Sustain. Energy Rev., vol. 62, pp. 988–1011, Sep. 2016, doi: 10.1016/j.rser.2016.05.045.

A. Khazaeian, A. Ashori, and M. Y. Dizaj, “Suitability of sorghum stalk fibers for production of particleboard,” Carbohydr. Polym., vol. 120, pp. 15–21, Apr. 2015, doi: 10.1016/j.carbpol.2014.12.001.

L. Zhang and Y. Hu, “Novel lignocellulosic hybrid particleboard composites made from rice straws and coir fibers,” Mater. Des., vol. 55, pp. 19–26, Mar. 2014, doi: 10.1016/j.matdes.2013.09.066.

A. A. Adediran et al., “Properties of agro-based hybrid particleboards,” Procedia Manuf., vol. 35, pp. 442–446, 2019, doi: 10.1016/j.promfg.2019.05.064.

M. R. Sanjay et al., “A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization,” Carbohydr. Polym., vol. 207, pp. 108–121, Mar. 2019, doi: 10.1016/j.carbpol.2018.11.083.

Badan Pusat Statistik Nusa Tenggara Barat, “Luas Panen, Produksi, dan Produktivitas Jagung 2013-2015.” (accessed Oct. 1, 2022).

J. T. Aladejana, Z. Wu, M. Fan, and Y. Xie, “Key advances in development of straw fibre bio-composite boards: An overview,” Mater. Res. Express, vol. 7, no. 1, p. 012005, Jan. 2020, doi: 10.1088/2053-1591/ab66ec.

N. H. Sari, I. N. G. Wardana, Y. S. Irawan, and E. Siswanto, “Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks,” J. Nat. Fibers, vol. 15, no. 4, pp. 545–558, 2018, doi: 10.1080/15440478.2017.1349707.

N. D. Yilmaz, M. Sulak, K. Yilmaz, and F. Kalin, “Physical and chemical properties of water-retted fibers extracted from different locations in corn husks,” J. Nat. Fibers, vol. 13, no. 4, pp. 397–409, Jul. 2016, doi: 10.1080/15440478.2015.1029201.

N. R. Kumar, C. R. Rao, P. Srikant, and B. R. Rao, “Mechanical properties of corn fiber reinforced polypropylene composites using Taguchi method,” Mater. Today: Proc., vol. 2, no. 4–5, 2015, pp. 3084–3092, doi: 10.1016/j.matpr.2015.07.251.

K. S. Chun et al., “Wood plastic composites made from corn husk fiber and recycled polystyrene foam,” J. Eng. Sci. Technol, vol. 13, no. 11, pp. 3445–3456, Nov. 2018.

A. Maghfirah, L. Hakim, and M. Hamid, “Manufacturing and characterization process of polymer concrete with aggregate from pumice stone and corn husk fiber as a filler,” J. Technomater. Phys., vol. 1, no. 1, pp. 6–14, Feb. 2019, doi: 10.32734/jotp.v1i1.819.

K. W. Prasetiyo, L. Zalukhu, L. Astari, F. Akbar, and D. Hermawan, “The potential of using agricultural waste: Corn husk for particleboard raw material,” in IOP Conf. Ser.: Earth Environ. Sci., vol. 591, no. 1, Nov. 2020, p. 012011, doi: 10.1088/1755-1315/591/1/012011.

Papan Serat, SNI 01-4449-2006, Indonesian National Standard, Jakarta, 2006. [Online].

A. Oushabi et al., “The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite,” S. Afr. J. Chem. Eng., vol. 23, pp. 116–123, Jun. 2017, doi: 10.1016/j.sajce.2017.04.005.

N. Venkateshwaran, A. E. Perumal, and D. Arunsundaranayagam, “Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite,” Mater. Des., vol. 47, pp. 151–159, May 2013, doi: 10.1016/j.matdes.2012.12.001.

T. Partuti, U. H. Fariyan, Y. Dwiyanti, A. Trenggono, and E. Yustanti, “Effect of fibre volume fraction and sodium hydroxide treatment on mechanical properties of palm fibre/unsaturated polyester composite,” JPSE (J. Phys. Sci. Eng.), vol. 7, no. 1, pp. 39–45, Apr. 2022, doi: 10.17977/um024v7i12022p039.

R. Yahaya, S. M. Sapuan, M. Jawaid, Z. Leman, and E. S. Zainudin, “Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application,” Def. Technol., vol. 12, no. 1, pp. 52–58, Feb. 2016, doi: 10.1016/j.dt.2015.08.005.

N. Saba, M. T. Paridah, K. Abdan, and N. A. Ibrahim, “Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites,” Mater. Chem. Phys., vol. 184, pp. 64–71, Sep. 2016, doi: 10.1016/j.matchemphys.2016.09.026.

N. H. Sari et al., “The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite,” Polym. Test., vol. 91, p. 106751, Nov. 2020, doi: 10.1016/j.polymertesting.2020.106751.

J. B. Ali, A. B. Musa, A. Danladi, M. M. Bukhari, and B. B. Nyakuma, “Physico-mechanical properties of unsaturated polyester resin reinforced maize cob and jute fiber composites,” J. Nat. Fibers, vol. 19, no. 9, pp. 3195–3207, 2022, doi: 10.1080/15440478.2020.1841062.

O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, “Progress report on natural fiber reinforced composites,” Macromol. Mater. Eng., vol. 299, no. 1, pp. 9–26, Jan. 2014, doi: 10.1002/mame.201300008.

Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, “A review on the degradability of polymeric composites based on natural fibres,” Mater. Des., vol. 47, pp. 424–442, 2013, doi: 10.1016/j.matdes.2012.11.025.

N. Saba, M. T. Paridah, and M. Jawaid, “Mechanical properties of kenaf fibre reinforced polymer composite: A review,” Constr. Build. Mater., vol. 76, pp. 87–96, Feb. 2015, doi: 10.1016/j.conbuildmat.2014.11.043.

K. Senthilkumar et al., “Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review,” Constr. Buildi. Mater., vol. 174, pp. 713–729, Jun. 2018, doi: 10.1016/j.conbuildmat.2018.04.143.

A. M. Youssef, A. El-Gendy, and S. Kamel, “Evaluation of corn husk fibers reinforced recycled low density polyethylene composites,” Mater. Chem. Phys., vol. 152, pp. 26–33, Feb. 2015, doi: 10.1016/j.matchemphys.2014.12.004.

Z. Luo et al., “Comparison of performances of corn fiber plastic composites made from different parts of corn stalk,” Ind. Crops Prod., vol. 95, pp. 521–527, Jan. 2017, doi: 10.1016/j.indcrop.2016.11.005.

Copyright (c) 2022 Rita Desiasni, Fauzi Widyawati, Yuliana Fitri Sersaningsih, Syamsul Bahtiar, Amirin Kusmiran

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License