Pengaruh Fraksi Nano (TiO2:SnO2) terhadap Struktur dan Efisiensi DSSC TiO2:SnO2/β-Karoten/FTO

Muhammad Baqir Zaini, Siti Maryam, S E I Suryani, S W Himmah, Z Nurdiana, Solehudin Solehudin, Thatit Suprayogi, Sunaryono Sunaryono, Markus Diantoro

Abstract


Penggunaan energi terbarukan berbasis energi matahari banyak dikembangkan dalam beberapa tahun terakhir berupa solar sel khususnya dalam bentuk DSSC. Semikonduktor SnO2 memiliki band gap yang paling besar yaitu 3,6 eV dan TiO2 dalam bentuk anatase dan rutil memiliki nilai 3,2 dan 3,0 eV. SnO2 dan TiO2 memiliki beberapa kemiripan pada sifat elektronik dan struktural. Pada penelitian ini, pembentukan komposit TiO2/SnO2 dilakukan dengan menggunakan variasi Wt% massa TiO2 100, 97, 94, 88  dan 85%. Metode dalam sintesis menggunakan kopresipitasi untuk TiO2 dan solgel untuk SnO2. Karaktersisasi XRD menunjukkan nano partikel TiO2 dengan struktur anatase dengan ukuran butir 8,89 nm dan nano partikel SnO2 28 nm. Pada variasi massa, efisiensi meningkat dengan bertambahnya massa TiO2. Nilai efisiensi maksimum yang dihasilkan pada 100 % TiO2 yaitu 0,18 %.

 

DOI: http://dx.doi.org/10.17977/um024v3i22018p063


Keywords


DSSC, β-karoten, TiO2-SnO2 komposit.

References


R. Patel, J. A. Seo, J. H. Koh, J. H. Kim, and Y. S. Kang, “Dye-sensitized solar cells employing amphiphilic poly (ethylene glycol) electrolytes,” J. Photochem. Photobiol. Chem., vol. 217, no. 1, pp. 169–176, 2011.

Y. Duan et al., “A dye-sensitized solar cell having polyaniline species in each component with 3.1%-efficiency,” J. Power Sources, vol. 284, pp. 178–185, Jun. 2015.

H. Li, C. Xie, Y. Liao, Y. Liu, Z. Zou, and J. Wu, “Characterization of Incidental Photon-to-electron Conversion Efficiency (IPCE) of porous TiO2/SnO2 composite film,” J. Alloys Compd., vol. 569, pp. 88–94, Aug. 2013.

S. Headley, “Youth studies Australia: an obituary,” Youth Stud. Aust. Online, vol. 32, no. 4, p. 1, 2013.

J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, “Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends,” Renew. Sustain. Energy Rev., vol. 68, pp. 234–246, Feb. 2017.

G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” Renew. Sustain. Energy Rev., vol. 69, pp. 705–718, Mar. 2017.

R. Rahimi, M. M. Moghaddas, S. Zargari, and R. Rahimi, “Synthesis of Mesoporous V-TiO2 with Different Surfactants: The Effect of Surfactant Type on Photocatalytic Properties,” in Advanced Materials Research, 2013, vol. 702, pp. 56–61.

Y. Gönüllü, G. C. M. Rodríguez, B. Saruhan, and M. Ürgen, “Improvement of gas sensing performance of TiO2 towards NO2 by nano-tubular structuring,” Sens. Actuators B Chem., vol. 169, pp. 151–160, 2012.

L. Wei et al., “Valence Band Edge Shifts and Charge-transfer Dynamics in Li-Doped NiO Based p-type DSSCs,” Electrochimica Acta, vol. 188, pp. 309–316, Jan. 2016.

D. Yu, G. Zhu, S. Liu, B. Ge, and F. Huang, “Photocurrent activity of light-harvesting complex II isolated from spinach and its pigments in dye-sensitized TiO2 solar cell,” Int. J. Hydrog. Energy, vol. 38, no. 36, pp. 16740–16748, Dec. 2013.

L. K. Singh and B. P. Koiry, “Natural Dyes and their Effect on Efficiency of TiO2 based DSSCs: a Comparative Study,” Mater. Today Proc., vol. 5, no. 1, Part 2, pp. 2112–2122, Jan. 2018.

I. Zama, C. Martelli, and G. Gorni, “Preparation of TiO2 paste starting from organic colloidal suspension for semi-transparent DSSC photo-anode application,” Mater. Sci. Semicond. Process., vol. 61, pp. 137–144, Apr. 2017.

B. Boro, B. Gogoi, B. M. Rajbongshi, and A. Ramchiary, “Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review,” Renew. Sustain. Energy Rev., vol. 81, pp. 2264–2270, Jan. 2018.

M. M. S. Sanad, A. E. Shalan, M. M. Rashad, and M. H. H. Mahmoud, “Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs),” Appl. Surf. Sci., vol. 359, pp. 315–322, Dec. 2015.

Q. Wali, Z. H. Bakr, N. A. Manshor, A. Fakharuddin, and R. Jose, “SnO2–TiO2 hybrid nanofibers for efficient dye-sensitized solar cells,” Sol. Energy, vol. 132, pp. 395–404, Jul. 2016.

F. Huang, D. Chen, Y. Chen, R. A. Caruso, and Y.-B. Cheng, “Mesoporous titania beads for flexible dye-sensitized solar cells,” J. Mater. Chem. C, vol. 2, no. 7, pp. 1284–1289, 2014.

M. S. Su’ait, M. Y. A. Rahman, and A. Ahmad, “Review on polymer electrolyte in dye-sensitized solar cells (DSSCs),” Sol. Energy, vol. 115, pp. 452–470, May 2015.

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem., vol. 164, no. 1, pp. 3–14, Jun. 2004.

P. Karthika, S. Ganesan, and M. Arthanareeswari, “Low-cost synthesized organic compounds in solvent free quasi-solid state polyethyleneimine, polyethylene glycol based polymer electrolyte for dye-sensitized solar cells with high photovoltaic conversion efficiencies,” Sol. Energy, vol. 160, pp. 225–250, Jan. 2018.

M. Stuckelberger, R. Biron, N. Wyrsch, F.-J. Haug, and C. Ballif, “Review: Progress in solar cells from hydrogenated amorphous silicon,” Renew. Sustain. Energy Rev., vol. 76, pp. 1497–1523, Sep. 2017.

S. V. Ingale et al., “TiO2-Polysulfone Beads for Use in Photo Oxidation of Rhodamine B,” Soft Nanosci. Lett., vol. 2, no. 4, p. 67, 2012.




Copyright (c) 2020 Muhammad Baqir Zaini

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License