Effect of Sintering Temperature on BPSCCO Superconductor with Addition of Al2O3 Using Wet Mixing Method

Nuviya Illa Muthi Aturroifah, Adi Tri Wicaksono, Ade Siyanti Nurul Hidayah, Markus Diantoro


Superconductors are materials that can conduct electric current without resistance. The application of superconducting materials in the field of transportation is the super-fast train or Magnetic Levitation (MagLev). BPSCCO added with Al2O3 nanoparticles has been successfully synthesized using the wet mixing method. In this study, variations in the sintering temperature (840 and 880oC) were carried out using the wet mixing method. The performance of BPSCCO with the addition of Al2O3 was carried out by testing XRD, SEM, and I-V. Based on the results of XRD characterization, the volume fraction, impurity, and crystal size respectively were 57.49% (BPSCCO-840), 38.96% (BPSCCO-880); 42.5% (BPSCCO-840), 38.96% (BPSCCO-880) and 21.38 nm (BPSCCO-840); 28.84 nm (BPSCCO-880). Based on the results of the SEM test, the sample slabs are regular and have little free space. Based on the I-V test results, the BPSCCO-840 sample has the highest electrical conductivity of 2.4x104 S/m at a current of 0.6 mA and the BPSCCO-880 sample has a conductivity of 2.8x104 S/m at a current of 0.3 mA


Superconductor, Al2O3, BPSCCO, Wet Mixing Method

Full Text:



S. F. Nasution, S. Humaidi, A. Imaduddin, N. Darsono, and H. Nugraha, “Increasing critical temperature on BPSCCO superconductors with addition of Al2O3,” J. Phys. Conf. Ser., vol. 1882, no. 1, p. 012021, May 2021, doi: 10.1088/1742-6596/1882/1/012021.

P. Mangin, R. Kahn, and R. Kahn, Superconductivity: An introduction. 2016.

Z. Deng et al., “A High-Temperature Superconducting Maglev-Evacuated Tube Transport (HTS Maglev-ETT) Test System,” IEEE Trans. Appl. Supercond., vol. 27, no. 6, Sep. 2017, doi: 10.1109/TASC.2017.2716842.

J. Minervini, M. Parizh, and M. Schippers, “Recent advances in superconducting magnets for MRI and hadron radiotherapy: An introduction to ‘Focus on superconducting magnets for hadron therapy and MRI,’” Supercond. Sci. Technol., vol. 31, no. 3, 2018, doi: 10.1088/1361-6668/aaa826.

R. Kleiner and W. Buckel, Superconductivity: An Introduction, Third Edit. Tübingen: Willey-VCH, 2015.

C.-K. Yang and C.-H. Lee, “Pressure-dependent topological superconductivity on the surface of FeTe 0.5 Se 0.5,” New J. Phys., vol. 24, no. 2, p. 023001, Feb. 2022, doi: 10.1088/1367-2630/ac4922.

R. P. Huebener, “The Abrikosov Vortex Lattice: Its Discovery and Impact,” J. Supercond. Nov. Magn., vol. 32, no. 3, pp. 475–481, 2019, doi: 10.1007/s10948-018-4916-0.

S. Tiara Pratiwi, P., Suprihatin, S., & Sembiring, “Variasi Kadar CaCo3 Terhadap Pembentukan Fasa Superkonduktor BSCCO 2223 Menggunakan Metode Pencampuran Basah,” J. Apl. Sains, Informasi, Elektron. dan Komput., vol. 2, no. 1, pp. 47–55, 2020.

M. Annabi, A. M’chirgui, F. Ben Azzouz, M. Zouaoui, and M. Ben Salem, “Addition of nanometer Al2O3 during the final processing of (Bi,Pb)-2223 superconductors,” Phys. C Supercond., vol. 405, no. 1, pp. 25–33, May 2004, doi: 10.1016/j.physc.2004.01.012.

R. P. Surahman, S. Suprihatin, and A. Riyanto, “Pengaruh Suhu Sintering Terhadap Tingkat Kemurnian Fase Superkonduktor BPSCCO-2223 pada Kadar Ca 2, 10 Menggunakan Metode Pencampuran Basah,” J. Teor. dan Apl. Fis., vol. 7, no. 1, pp. 63–68, 2019.

S. Istikomah, S. Suprihatin, and A. Riyanto, “Sintesis Superkonduktor BSCCO-2223 dengan Variasi Waktu Sintering pada Kadar Ca= 2, 10 Menggunakan Metode Pencampuran Basah,” J. Teor. dan Apl. Fis., vol. 7, no. 2, pp. 139–145, 2019.

M. N. Rahman, M. A., Rahaman, M. Z., & Samsuddoha, “A review on cuprate based superconducting materials including characteristics and applications,” Am. J. Phys. Appl., vol. 3, no. 2, pp. 39–56, 2015.

H. Chaloupka, M. Heein, U. Klein, G. Muller, and H. Piel, “Microwave Properties of High-Tc Superconductors,” in 18th European Microwave Conference, 1988, 1988, pp. 719–724, doi: 10.1109/EUMA.1988.333896.

J. T. Markert, B. D. Dunlap, and M. B. Maple, “Magnetism, Superconductivity, and Chemical Substitutions in YBa 2 Cu 3 O 7-δ,” MRS Bull., vol. 14, no. 1, pp. 37–44, Jan. 1989, doi: 10.1557/S0883769400053884.

A. Rigamonti and P. Carretta, “Superconductors, the Superconductive Phase Transition and Fluctuations,” 2015, pp. 539–590.

G. Fuchs, C. Fischer, B. Holzapfel, B. Schüpp-Niewa, and H. Warlimont, “Superconductors,” 2018, pp. 705–756.

R. Masnita, M., Awang, R., & Abd-Shukor, “AC Susceptibility and Electrical Properties of PbS added Bi,” Sains Malaysiana, vol. 51, no. 1, pp. 315–328, 2022.

C. Buzea and T. Yamashita, “Review of the superconducting properties of MgB 2,” Supercond. Sci. Technol., vol. 14, no. 11, pp. R115–R146, Nov. 2001, doi: 10.1088/0953-2048/14/11/201.

S. Massidda, J. Yu, and A. J. Freeman, “Electronic structure and properties of Bi2Sr2CaCu2O8, the third high-Tc superconductor,” Phys. C Supercond., vol. 152, no. 3, pp. 251–258, May 1988, doi: 10.1016/0921-4534(88)90136-0.

M. R. Sanghvi, O. H. Tambare, and A. P. More, “Performance of various fillers in adhesives applications: a review,” Polym. Bull., Jan. 2022, doi: 10.1007/s00289-021-04022-z.

T. YOKOI, H. MATSUBARA, T. KAMITANI, S. TERASAKA, and M. KAMITAKAHARA, “Preparing dense Yb2SiO5 sintered bodies from Yb–Si–O powder synthesized by the polymerizable complex method and appropriate calcination,” J. Ceram. Soc. Japan, vol. 130, no. 1, p. 21083, Jan. 2022, doi: 10.2109/jcersj2.21083.

L. R. Liyana Mardova, L. M., Amilia Rasitiani, A. R., Dwi Asmi, D. W., & Leni Rumiyanti, “Sintesis Superkonduktor Bi1, 6Pb0, 4Sr2Ca2Cu3O (10+ x) untuk Peraga Uji Meissner Menggunakan Metode Reaksi Padatan,” J. Teor. dan Apl. Fis., vol. 8, no. 2, pp. 93–98, 2020.

Copyright (c) 2023 Nuviya Illa Muthi Aturroifah, Adi Tri Wicaksono, Ade Siyanti Nurul Hidayah, Markus Diantoro

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License