Optimization of Electro-Optic Sampling by Photodiode's Choice for Terahertz Detection

Fauzul Rizal, Imene Benabdelghani


Despite being widely used in a lot of measurements involving the generation of electromagnetic radiation, most of the optimization of this EOS technique only focused on the detection crystal and nonlinear coefficient of the said crystal. After the detection crystal, the combined pump-probe beam should be separated again based on its polarization and measured simultaneously with photodiodes. The authors found out that there are not many studies focusing on this part of the EOS technique and decided to present in this paper to contribute to the better optimization of detection with the EOS technique. We found out that the change of photodiode could have a relationship with the detected signal’s shape in the time and space domain, alongside the change of delay-time detection.


Electro-optic sampling; photodiode, semiconductor; nonlinear optics

Full Text:



B. Ewers et al., “Ionization of coherent excitons by strong terahertz fields,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 7, pp. 1–5, 2012, doi: 10.1103/PhysRevB.85.075307.

S. S. Dhillon et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D. Appl. Phys., vol. 50, no. 4, p. 043001, Feb. 2017, doi: 10.1088/1361-6463/50/4/043001.

A. Irizawa, S. Lupi, and A. Marcelli, “Terahertz as a Frontier Area for Science and Technology,” Condens. Matter, vol. 6, no. 3, p. 23, Jun. 2021, doi: 10.3390/condmat6030023.

J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, “Laser-Driven Strong-Field Terahertz Sources,” Advanced Optical Materials, vol. 8, no. 3. Wiley-VCH Verlag, Feb. 01, 2020. doi: 10.1002/adom.201900681.

L. Afsah-Hejri, E. Akbari, A. Toudeshki, T. Homayouni, A. Alizadeh, and R. Ehsani, “Terahertz spectroscopy and imaging: A review on agricultural applications,” Comput. Electron. Agric., vol. 177, no. September 2019, p. 105628, 2020, doi: 10.1016/j.compag.2020.105628.

Y. Peng, C. Shi, Y. Zhu, M. Gu, and S. Zhuang, “Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement,” PhotoniX, vol. 1, no. 1, pp. 1–18, 2020, doi: 10.1186/s43074-020-00011-z.

J. Xie et al., “A review on terahertz technologies accelerated by silicon photonics,” Nanomaterials, vol. 11, no. 7, 2021, doi: 10.3390/nano11071646.

B. Ferguson and X.-C. Zhang, “Materials for Terahertz Optical Science and Technology,” Adv. Opt. Mater., vol. 8, no. 3, p. 1901984, Feb. 2002, doi: 10.1002/adom.201901984.

G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H. G. Roskos, “Roadmap of Terahertz Imaging 2021,” Sensors, vol. 21, no. 12, p. 4092, Jun. 2021, doi: 10.3390/s21124092.

B. Zhang et al., “1.4-mJ High Energy Terahertz Radiation from Lithium Niobates,” Laser Photonics Rev., vol. 15, no. 3, p. 2000295, Mar. 2021, doi: 10.1002/lpor.202000295.

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett., vol. 83, no. 2, pp. 237–239, 2003, doi: 10.1063/1.1592889.

G. Polonyi et al., “Highly efficient scalable semiconductor terahertz sources,” Int. Conf. Infrared, Millimeter, Terahertz Waves, IRMMW-THz, vol. 2019-Septe, pp. 1–3, 2019, doi: 10.1109/IRMMW-THz.2019.8874482.

B. Zhang et al., “1.4-mJ High Energy Terahertz Radiation from Lithium Niobates,” Laser Photonics Rev., vol. 15, no. 3, Mar. 2021, doi: 10.1002/lpor.202000295.

Y. S. Lee, Principles of terahertz science and technology. Springer, 2009. doi: 10.1007/978-0-387-09540-0.

P. S. Nugraha, “Investigation of Scalable Concepts for Intense Terahertz Pulse Generation,” University of Pécs, 2020. [Online]. Available: https://mailman.kfki.hu/sympa/arc/fizinfo/2019-12/msg00004/Thesis_Priyo_Print.pdf

T. Yajima and N. Takeuchi, “Far-lnfrared Difference-Frequency Generation by Picosecond Laser Pulses,” Jpn. J. Appl. Phys., vol. 9, no. 11, pp. 1361–1371, 1970, doi: 10.1143/JJAP.9.1361.

L. Xu, X. C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett., vol. 61, no. 15, pp. 1784–1786, 1992, doi: 10.1063/1.108426.

M. Nagai et al., “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett., vol. 85, no. 18, pp. 3974–3976, 2004, doi: 10.1063/1.1813645.

G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express, vol. 14, no. 17, p. 7909, 2006, doi: 10.1364/oe.14.007909.

J. Hebling et al., “Velocity matching by pulse front tilting for large-area THz-pulse generation References and links,” Opt. Express, vol. 10, no. 21, p. 299, 2002.

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy THz sources based on optical rectification,” Proc. - TERA-MIR 2009, NATO Adv. Res. Work. Terahertz Mid Infrared Radiat. Basic Res. Pract. Appl., vol. 18, no. 12, pp. 21–22, 2009, doi: 10.1109/TERAMIR.2009.5379649.

K. Reimann, “Table-top sources of ultrashort THz pulses,” Reports Prog. Phys., vol. 70, no. 10, pp. 1597–1632, Oct. 2007, doi: 10.1088/0034-4885/70/10/R02.

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B, vol. 25, no. 7, p. B6, Jul. 2008, doi: 10.1364/josab.25.0000b6.

P. Sulzer et al., “Determination of the electric field and its Hilbert transform in femtosecond electro-optic sampling,” Phys. Rev. A, vol. 101, no. 3, pp. 1–17, 2020, doi: 10.1103/PhysRevA.101.033821.

B. Crockett, J. van Howe, N. Montaut, R. Morandotti, and J. Azaña, “High-Resolution Time-Correlated Single-Photon Counting Using Electro-Optic Sampling,” Laser Photonics Rev., vol. 16, no. 10, 2022, doi: 10.1002/lpor.202100635.

Y. Shang et al., “Polarization determination based on the longitudinal field of a converging terahertz wave,” Opt. Lett., vol. 43, no. 22, p. 5508, 2018, doi: 10.1364/ol.43.005508.

X. Wang, Y. Shang, and Y. Zhang, “Polarization characterization by the longitudinal component of a focused terahertz field,” Opt. InfoBase Conf. Pap., vol. Part F140-, no. 2018, p. 1, 2019.

E. Ridente et al., “Electro-optic characterization of synthesized infrared-visible light fields,” Nat. Commun., vol. 13, no. 1, 2022, doi: 10.1038/s41467-022-28699-6.

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., vol. 67, no. 1995, p. 3523, 1995, doi: 10.1063/1.114909.

A. S. Wyatt et al., “Attosecond sampling of arbitrary optical waveforms,” Optica, vol. 3, no. 3, p. 303, Mar. 2016, doi: 10.1364/OPTICA.3.000303.

K. T. Kim et al., “Petahertz optical oscilloscope,” Nat. Photonics, vol. 7, no. 12, pp. 958–962, 2013, doi: 10.1038/nphoton.2013.286.

S. Sederberg et al., “Attosecond optoelectronic field measurement in solids,” Nat. Commun., vol. 11, no. 1, pp. 1–8, 2020, doi: 10.1038/s41467-019-14268-x.

I. Pupeza et al., “Field-resolved infrared spectroscopy of biological systems,” Nature, vol. 577, no. 7788, pp. 52–59, 2020, doi: 10.1038/s41586-019-1850-7.

F. Rizal, G. Polónyi, and J. Hebling, “Comparative Study of Semiconductors for Terahertz Generation by Nonlinear Optical Process,” XX. Szentágothai János Multidiszcip. Konf. és Hallg. Vers. Absztrakt kötet, p. 215, Mar. 2022, doi: 10.48550/arxiv.2303.05569.

Thorlabs, “Free-Space Biased Detectors,” 2023. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1295

Copyright (c) 2023 Fauzul Rizal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License