Identification of Sediment Formation Based on Magnetic Content and Element Composition of Mud Volcano in Sangiran Sediment using VSM and X-Ray Fluorescence

Cahyo Aji Hapsoro, Mariyanto Mariyanto, Eleonora Agustine, Mimin Iryanti, Rina Dwi Indriana, Mochamad Khoirul Rifai, Alpan Ibrahim, Kharisma Asmarani Budiono


Based on trace geological history and several studies, the Sangiran mud volcano provides insight into the geology and hydrology of the region, aquifer system in the basin, groundwater flow patterns and characteristics, rock lithology, hydrogeology condition, and saltwater trap mapping. Related to these conditions, studies were conducted on the magnetic content and composition of the major oxide compounds in the Sangiran sediments. Sample analysis was based on geochemical methods. The methods consist of frequency dependent magnetic susceptibility and vibrating sample magnetometer (VSM) analysis. Geochemical analyses using x-ray fluorescence (XRF) analysis have been conducted and various elemental grades have been determined. VSM results confirm that the magnetic content of Sangiran sediments is partly dominated by Fe (17.66 percent) contained in hematite (Fe2O3). At the same time, the samples of Sangiran sediment were enriched by Si, Fe, Al, Ca, Cl, Ti, and K according to XRF measurements. The samples exhibited the highest Si and Fe concentrations in samples T1 (Si is 29.48 percent and Fe is 13.66 percent) and T7 (Si is 24.95 percent and Fe is 12.01 percent). Meanwhile, in the T4 sample, the highest concentrations were Si and Ca, 23.45 percent and 13.45 percent, respectively. Retrieved from the magnetic susceptibility measurement, this paper confirm that Fe content is one of the components of volcanic ash in the Sangiran sediment.

DOI: 10.17977/um024v8i12023p009


magnetic content; element composition; Sangiran sediment; vibrating sample magnetometer; x-ray fluorescence

Full Text:



A. Novianto, C. Prasetyadi, and W. Hidayat, “Mud volcano: Revealing the stratigraphy of Kendeng basin, Indonesia,” Yangtze Oil and Gas, vol. 7, no. 1, pp. 48–64, Jan. 2021, doi: 10.4236/ojogas.2022.71004.

A. R. Gintu, R. Wagiman, M. W. Salenussa, and D. Pramana, “Potensi kadar mineral "mud volcano" banyu asin Sangiran sebagai sumber mineral untuk pertanian lahan kering,” B. S. thesis, Dept. Agric., Kristen Satya Wacana Univ., Salatiga, Indonesia, 2020.

M. Burhannudinnur, “Karakteristik gunung lumpur zona rembang dan implikasinya terhadap lapangan migas di Jawa Timur,” Lembaran Publikasi Minyak dan Gas Bumi, vol. 53, no. 3, pp. 123–149, Dec. 2019, doi: 10.29017/LPMGB.53.3.432.

S. Kumazawa, “Quaternary geology and hydrogeology of the Madiun,” J. Geosci. Osaka City Univ., vol. 37, pp. 213–242, Mar. 1994.

C. Lembayu, C. Muryani, and S. Nugraha, “Study of shallow groundwater characteristics in sangiran dome, kalijambe district,” GeoEco, vol. 6, no. 1, pp. 50–62, Jan. 2020, doi: 10.20961/ge.v6i1.38536.

F. Sukmaya, S. Supriyadi, W. Hardyanto, “Identifikasi fenomena jebakan air garam melalui metode geolistrik resistivitas konfigurasi schlumberger studi kasus Desa Ngaglik Kecamatan Sambi Boyolali,” Unnes Phys. J., vol. 5, no. 2, pp. 7–13, Jun. 2016.

A. Tonggiroh, Dasar-Dasar Geokimia Eksplorasi. Makassar, Indonesia: Social Politic Genius (SIGn), Feb. 2021.

Y. Liu, E. J. M. Carranza, K. Zhou, and Q. Xia, “Compositional balance analysis: An elegant method of geochemical pattern recognition and anomaly mapping for mineral exploration,” Nat. Resour. Res., vol. 28, pp. 1269–1283, Feb. 2019, doi: 10.1007/s11053-019-09467-8.

R. Zuo, J. Wang, Y. Xiong, and Z. Wang, “The processing methods of geochemical exploration data: Past, present, and future,” Appl. Geochem., vol. 132, p. 105072, Sep. 2021, doi: 10.1016/j. apgeochem.2021.105072.

H. Chen, S. Wang, Z. Chen, W. Yan, and G. Li, “Geochemical and magnetic signals for the mud volcano-induced methane seepage in the core sediments of Shenhu area, northern South China Sea,” Environ. Earth Sci., vol. 73, pp. 6365–6378, Nov. 2015, doi: 10.1007/s12665-014-3860-y.

L. P. Hällberg et al., “Magnetic susceptibility parameters as proxies for desert sediment provenance,” Aeolian Res., vol. 46, p. 100615, Oct. 2020, doi: 10.1016/j.aeolia.2020.100615.

J. M. Parés, “Sixty years of anisotropy of magnetic susceptibility in deformed sedimentary rocks,” Front. Earth Sci., vol. 3, p. 4, Feb. 2015, doi: 10.3389/feart.2015.00004.

J. Liu et al., “Magnetic susceptibility variations and provenance of surface sediments in the South China Sea,” Sediment. Geol., vol. 230, no. 1–2, pp. 77–85, Oct. 2010, doi: 10.1016/j.sedgeo.2010.07.001.

M. Li, S. Zhu, T. Ouyang, J. Tang, and C. He, “Magnetic fingerprints of surface sediment in the Bohai Sea, China,” Mar. Geol., vol. 427, p. 106226, Sep. 2020, doi: 10.1016/j.margeo.2020.106226.

K. M. Rowntree, B. W. van der Waal, and S. Pulley, “Magnetic susceptibility as a simple tracer for fluvial sediment source ascription during storm events,” J. Environ. Manage., vol. 194, pp. 54–62, Jun. 2017, doi: 10.1016/j.jenvman.2016.11.022.

O. Togibasa, M. Akbar, A. Pratama, and S. Bijaksana, “Distribution of magnetic susceptibility of natural iron sand in the sarmi coast area,” J. Phys.: Conf. Ser., vol. 1204, no. 1, p. 012074, Apr. 2019, doi: 10.1088/1742-6596/1204/1/012074.

R. Yunginger et al., “Lithogenic and anthropogenic components in surface sediments from lake limboto as shown by magnetic mineral characteristics, trace metals, and REE geochemistry,” Geosci., vol. 8, no. 4, p. 116, Mar. 2018, doi: 10.3390/geosciences8040116.

Mariyanto and S. Bijaksana, “Magnetic properties of surabaya river sediments, east java, Indonesia,” AIP Conf. Proc., vol. 1861, no. 1, p. 030045, Jul. 2017, doi: 10.1063/1.4990932.

S. Zulaikah, D. Sisinggih, Y. Bungkang, Z. Dani, and M. D. Ong, “Magnetic susceptibility, chemical element content and morphology of magnetic mineral in surface sediment of Kamp Walker and Hubay rivers as an inlet of Sentani lake, Papua-Indonesia,” AIP Conf. Proc., vol. 1861, no. 1, p. 030010, Jul. 2017, doi: 10.1063/1.4990897.

M. Mariyanto et al., “Environmental magnetism data of Brantas River bulk surface sediments, Jawa Timur, Indonesia,” Data Br., vol. 25, p. 104092, Aug. 2019, doi: 10.1016/j.dib.2019.104092.

W. Zhang, Y. Xing, L. Yu, H. Feng, and M. Lu, “Distinguishing sediments from the Yangtze and Yellow Rivers, China: A mineral magnetic approach,” The Holocene, vol. 18, no. 7, pp. 1139–1145, Nov. 2008, doi: 10.1177/0959683608095582.

R. Ravisankar, N. Harikrishnan, A. Chandrasekaran, M. S. Gandhi, and R. Alagarsamy, “Data on heavy metal and magnetic relationships in coastal sediments from South East Coast of Tamilnadu, India,” Data Br., vol. 16, pp. 392–400, Feb. 2018, doi: 10.1016/j.dib.2017.11.056.

W. Guo, S. Huo, and W. Ding, “Historical record of human impact in a lake of northern China: Magnetic susceptibility, nutrients, heavy metals and OCPs,” Ecol. Indic., vol. 57, pp. 74–81, Oct. 2015, doi: 10.1016/j.ecolind.2015.04.019.

R. N. Fajri et al., “Analyzing magnetic susceptibility and elemental composition of rocks and soil around Danau Diatas, West Sumatra, Indonesia,” J. Phys.: Conf. Ser., vol. 1481, no. 1, p. 012022, Mar. 2020, doi: 10.1088/1742-6596/1481/1/012022.

A. Abrajevitch and K. Kodama, “Diagenetic sensitivity of paleoenvironmental proxies: A rock magnetic study of Australian continental margin sediments,” Geochem., Geophys., Geosys., vol. 12, no. 5, May 2011, doi: 10.1029/2010GC003481.

S. Zulaikah et al., “Magnetic susceptibility and morphology of natural magnetic mineral deposit in vicinity of human’s living,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 202, no. 1, p. 012023, May 2017, doi: 10.1088/1757-899X/202/1/012023.

H. Rifai, R. Putra, M. R. Fadila, E. Erni, and C. M. Wurster, “Magnetic susceptibility and heavy metals in Guano from South Sulawesi caves,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 335, no. 1, p. 012001, Apr. 2018, doi: 10.1088/1757-899X/335/1/012001.

R. Putra, H. Rifai, and C. M. Wurster, “Relationship between magnetic susceptibility and elemental composition of Guano from Solek Cave, West Sumatera,” J. Phys.: Conf. Ser., vol. 1185, no. 1, p. 012011, Apr. 2019, doi: 10.1088/1742-6596/1185/1/012011.

N. Y. Daryanti, S. Zulaikah, N. Mufti, and D. S. Haryati, “Suseptibilitas magnetik dan kelimpahan mineral magnetik pada tanah sawah di Lawang dan Soekarno-Hatta, Malang,” JPSE (J. Phys. Sci. Eng.), vol. 3, no. 2, pp. 48–54, Oct. 2019, doi: 10.17977/um024v3i22018p048.

C. Chaine et al., “Optimized industrial sorting of WEEE plastics: Development of fast and robust h-XRF technique for hazardous components,” Case Stud. Chem. Environ. Eng., vol. 7, p. 100292, Jun. 2023, doi: 10.1016/j.cscee.2022.100292.

C. Akam et al., “Comparison of methods for the geochemical determination of rare earth elements: Rock Canyon Creek REE–F–Ba deposit case study, SE British Columbia, Canada,” Geochem.: Explor., Environ., Anal., vol. 19, no. 4, pp. 414–430, Apr. 2019, doi: 10.1144/geochem2018-044.

B. Jiu, W. Huang, and N. Mu, “Mineralogy and elemental geochemistry of Permo-Carboniferous Li-enriched coal in the southern Ordos Basin, China: Implications for modes of occurrence, controlling factors and sources of Li in coal,” Ore Geol. Rev., vol. 141, p. 104686, Feb. 2022, doi: 10.1016/j. oregeorev.2021.104686.

O. S. Vereshchagin et al., “Ferro-manganese nodules from the Kara Sea: Mineralogy, geochemistry and genesis,” Ore Geol. Rev., vol. 106, pp. 192–204, Mar. 2019, doi: 10.1016/j.oregeorev.2019.01.023.

I. Y. Silachyov, “Combination of instrumental neutron activation analysis with x-ray fluorescence spectrometry for the determination of rare-earth elements in geological samples,” J. Anal. Chem., vol. 75, pp. 878–889, Jul. 2020, doi: 10.1134/S106193482007014X.

F. Akmal et al., “Identification of elemental composition and heavy metal content in Maninjau Lake sediment using x-ray fluorescence (MNJ 18-41B),” JPSE (J. Phys. Sci. Eng.), vol. 6, no. 2, pp. 68–76, Oct. 2021, doi: 10.17977/um024v6i22021p068.

S. An, B. Norlin, M. Hummelgård, and G. Thungström, “Comparison of elemental analysis techniques for fly ash from municipal solid waste incineration using x-rays and electron beams,” IOP Conf. Ser.: Earth Environ. Sci., vol. 337, no. 1, p. 012007, Nov. 2019, doi: 10.1088/1755-1315/337/1/012007.

M. Mariyanto et al., “Heavy metal contents and magnetic properties of surface sediments in volcanic and tropical environment from Brantas River, Jawa Timur Province, Indonesia,” Sci. Total Environ., vol. 675, pp. 632–641, Jul. 2019, doi: 10.1016/j.scitotenv.2019.04.244.

S. L. Hilgen, F. J. Hilgen, S. Adhityatama, K. F. Kuiper, and J. C. Joordens, “Towards an astronomical age model for the Lower to Middle Pleistocene hominin-bearing succession of the Sangiran Dome area on Java, Indonesia,” Quat. Sci. Rev., vol. 297, p. 107788, Dec. 2022, doi: 10.1016/j.quascirev.2022.107788.

M. Itihara et al., “Geology and stratigraphy of sangiran area,” in Quaternary Geology of the Hominid Fossil Bearing Formations in Java, N. Watanabe, D. Kadir, Eds, Jakarta, Indonesia: Ministry of Mines and Energy, Directorate General of Geology and Mineral Resources, Geological Research and Development Centre, 1985.

S. Bronto, P. Asmoro, and M. Efendi, “Gunung api lumpur di daerah Cengklik dan sekitarnya, Kabupaten Boyolali Provinsi Jawa Tengah,” J. Geol. Sumberd. Miner., vol. 18, no. 3, pp. 147–159, Aug. 2017.

S. Sudarningsih, H. Aliyah, S. J. Fajar, and S. Bijaksana, “Magnetic characterization and heavy metals pollutions of sediments in Citarum River, Indonesia,” J. Phys.: Conf. Ser., vol. 1204, no. 1, p. 012082, Apr. 2019, doi: 10.1088/1742-6596/1204/1/012082.

J. A. Dearing, Environmental Magnetic Susceptibility: Using The Bartington MS2 System, 2nd ed. Brigsley, UK: Chi Publishing, 1999.

J. Huang et al., “Sediment distribution and dispersal in the southern South China Sea: Evidence from clay minerals and magnetic properties,” Mar. Geol., vol. 439, p. 106560, Sep. 2021, doi: 10.1016/j.margeo.2021.106560.

A. M. Hamdan et al., “Magnetic susceptibilities of surface sediments from estuary rivers in volcanic regions,” Environ. Monit. Assess., vol. 194, no. 4, p. 239, Aug. 2022, doi: 10.1007/s10661-022-09891-z.

D. D. Lestiani et al., “Characteristics of trace elements in volcanic ash of kelud eruption in East Java, Indonesia,” Indones. J. Chem., vol. 18, no. 3, pp. 457–463, Jul. 2018, doi: 10.22146/ijc.26876.

E. Sokol et al., “Mineralogy and geochemistry of mud volcanic ejecta: A new look at old issues (a case study from the Bulganak field, Northern Black Sea),” Minerals, vol. 8, no. 8, p. 344, Aug. 2018, doi: 10.3390/min8080344.

A. Baldermann, O. R. Abbasov, A. Bayramova, E. Abdullayev, and M. Dietzel, “New insights into fluid-rock interaction mechanisms at mud volcanoes: Implications for fluid origin and mud provenance at Bahar and Zenbil (Azerbaijan),” Chem. Geol., vol. 537, p. 119479, Mar. 2020, doi: 10.1016/j.chemgeo.2020.119479.

W. Xu et al., “Mineralogical and geochemical characteristics of hydrocarbon-bleached rocks in Baiyanggou mud volcanoes, Xinjiang, NW China,” Appl. Geochem., vol. 116, p. 104572, May 2020, doi: 10.1016/j.apgeochem.2020.104572.

Y. Wang, Q. Huang, C. Lemckert, and Y. Ma, “Laboratory and field magnetic evaluation of the heavy metal contamination on Shilaoren Beach, China,” Mar. Pollut. Bull., vol. 117, no. 1–2, pp. 291–301, Apr. 2017, doi: 10.1016/j.marpolbul.2017.01.080.

V. A. Tiwow, J. D. Malago, M. J. Rampe, and M. Lapa, “Magnetic susceptibility of surface sediment in the Tallo tributary of Makassar city,” J. Phys.: Conf. Ser., vol. 1899, no. 1, p. 012124, May 2021, doi: 10.1088/1742-6596/1899/1/012124.

A. Pratama, S. Bijaksana, M. Abdurrachman, and N. A. Santoso, “Rock magnetic, petrography, and geochemistry studies of lava at the Ijen volcanic complex (IVC), Banyuwangi, East Java, Indonesia,” Geosci., vol. 8, no. 5, p. 183, 2018, doi: 10.3390/geosciences8050183.

S. Zulaikah and I. P. Nurlaily, “Magnetic domain distribution analysis of volcanic material from the 2017 eruptions of Mount Agung, Indonesia,” J. Phys.: Conf. Ser., vol. 1093, no. 1, p. 012029, Sep. 2018, doi: 10.1088/1742-6596/1093/1/012029.

L. Vigliotti, D. Bilardello, A. Winkler, and P. del Carlo, “Rock magnetic fingerprint of Mt Etna volcanic ash,” Geophys. J. Int., vol. 231, no. 2, pp. 749–769, Nov. 2022, doi: 10.1093/gji/ggac213.

M. V. Esteller, N. Kondratenko, J. L. Expósito, M. Medina, and M. A. M. del Campo, “Hydrogeochemical characteristics of a volcanic-sedimentary aquifer with special emphasis on Fe and Mn content: A case study in Mexico,” J. Geochem. Explor., vol. 180, pp. 113–126, Sep. 2017, doi: 10.1016/j.gexplo.2017.06.002.

S. J. Hapsari, R. Latifah, and M. Muhaimin, “The role of black tea and pineapple juice as negative oral contrasts on magnetic resonance cholangiopancreatography (MRCP) examination,” J. Vocat. Health Stud., vol. 2, no. 3, pp. 121–126, Mar. 2019, doi: 10.20473/jvhs.V2.I3.2019.121-126.

N. Garcia-Troncoso, B. Xu, and W. Probst-Pesantez, “Development of concrete incorporating recycled aggregates, hydrated lime and natural volcanic pozzolan,” Infrastructures, vol. 6, no. 11, p. 155, 2021, doi: 10.3390/infrastructures6110155.

Copyright (c) 2023 Cahyo Aji Hapsoro, Mariyanto, Eleonora Agustine, Mimin Iryanti, Rina Dwi Indriana, Mochamad Khoirul Rifai, Alpan Ibrahim, Kharisma Asmarani Budiono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License