Cover Image

Study of Cassava Peel Biomass and Spent Bleaching Earth (SBE) as Raw Material for Refused Derived Fuel (RDF)

Riza Hudayarizka, Eka Masrifatus Anifah, Umi Sholikah, Ismi Khairunnissa Ariani, Siti Iniz Khairunisa Wijaya

Abstract


Cassava, a widely used raw material in Indonesia's food industry, amounted to 14.9 million tons in 2022. Typically, cassava peel, comprising 2-5% of the plant, is discarded in landfills or left untreated. However, recent research suggests its potential as a source of refuse-derived fuel (RDF), given its high calorific value of 4253 kcal/kg and 12.55% fixed carbon. Another potential RDF source is spent bleaching earth (SBE), a by-product of oil treatment, containing 20-40% oil. This study explores the impact of different compositions of cassava peel, SBE, and various binders on RDF characteristics. Binders like tapioca flour, durian seed, and rejected papaya were tested in ratios ranging from 70:20:10 to 90:0:10. The findings reveal that the 90:0:10 composition with rejected papaya binder yielded RDF with the highest calorific value and volatile matter content. Specifically, RDF from 90% cassava peel exhibited a calorific value of 5320 kcal/kg, fixed carbon of 13.9%, volatile matter of 80%, ash content of 5.7%, and moisture content of 0.3%. These results meet Indonesia's RDF standards, which mandate a calorific value above 3000 kcal/kg and volatile matter between 50-80%.

Keywords


Biomass; Cassava Peel; RDF; Renewable Energy; SBE

Full Text:

PDF

References


K. O. Yoro and M. O. Daramola, CO2 emission sources, greenhouse gases, and the global warming effect. Elsevier Inc., 2020. doi: 10.1016/B978-0-12-819657-1.00001-3.

M. Schneider, “The cement industry on the way to a low-carbon future,” Cem. Concr. Res., vol. 124, no. June, p. 105792, 2019, doi: 10.1016/j.cemconres.2019.105792.

D. Xu, Y. Cui, H. Li, K. Yang, W. Xu, and Y. Chen, “On the future of Chinese cement industry,” Cem. Concr. Res., vol. 78, pp. 2–13, 2015, doi: 10.1016/j.cemconres.2015.06.012.

R. Kan, C. Kungkajit, and T. Kaosol, “Recycle of Plastic Bag Wastes with Organic Wastes to Energy for RDF Productions,” Am. J. Appl. Sci., vol. 14, no. 12, pp. 1103–1110, 2017, doi: 10.3844/ajassp.2017.1103.1110.

R. Yuliarningsih, F. Goembira, P. S. Komala, N. P. Putra, and M. Nasra, “Oil Sludge and Biomass Waste Utilization as Densified Refuse-Derived Fuels for Alternative Fuels: Case Study of an Indonesia Cement Plant,” J. Hazardous, Toxic, Radioact. Waste, vol. 24, no. 4, pp. 1–7, 2020, doi: 10.1061/(asce)hz.2153-5515.0000511.

M. R. Sabour and M. Shahi, “Spent Bleaching Earth Recovery of Used Motor-Oil Refinery,” Civ. Eng. J., vol. 4, no. 3, p. 572, 2018, doi: 10.28991/cej-0309116.

S. Placxedes, M. Tirivaviri, Abdulkareem, S. Ambali, and D. Gwiranai, “Spent Bleaching Earth: Synthesis, Properties, Characterisation and Application,” J. Sustain. Sci. Manag., vol. 19, no. 3, pp. 192–220, 2024, doi: 10.46754/jssm.2024.03.014.

J. Adekunle, J. Ibrahim, and E. Kucha, “Proximate and Ultimate Analyses of Biocoal Briquettes of Nigerian’s Ogboyaga and Okaba Sub-bituminous Coal,” Br. J. Appl. Sci. Technol., vol. 7, no. 1, pp. 114–123, 2015, doi: 10.9734/bjast/2015/15154.

M. A. Waheed, O. A. Akogun, and C. C. Enweremadu, “Influence of feedstock mixtures on the fuel characteristics of blended cornhusk, cassava peels, and sawdust briquettes,” Biomass Convers. Biorefinery, vol. 13, no. 17, pp. 16211–16226, 2023, doi: 10.1007/s13399-023-04039-6.

S. Anis et al., “Effect of Adhesive Type on the Quality of Coconut Shell Charcoal Briquettes Prepared by the Screw Extruder Machine,” J. Renew. Mater., vol. 12, no. 2, pp. 381–396, 2024, doi: 10.32604/jrm.2023.047128.

Y. Hilario, I. H. Sahputra, Y. Tanoto, G. Jeremy Gotama, A. Billy, and W. Anggono, “Sustainable product development of biomass briquette from Samanea saman leaf waste with rejected papaya as the binding agent in Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1094, no. 1, p. 012006, 2022, doi: 10.1088/1755-1315/1094/1/012006.

I. K. Ariani, E. M. Anifah, M. M. A. Harfadli, U. Sholikah, and I. N. Hawani, “Valorization of durian peel waste and sewage sludge as bio-briquette,” IOP Conf. Ser. Earth Environ. Sci., vol. 1239, no. 1, 2023, doi: 10.1088/1755-1315/1239/1/012018.

P. Donald, C. Sanchez, M. Me, T. Aspe, and K. N. Sindol, “An Overview on the Production of Bio-briquettes from Agricultural Wastes: Methods, Processes, and Quality,” J. Agric. Food Eng., vol. 3, no. 1, pp. 1–17, 2022, doi: 10.37865/jafe.2022.0036.

E. Anggereini, U. Yelianti, and H. Sofyan, “Processing Of Palm Oil Waste Based On Alternative Energy Sources Through Bricket Technology For Farmers In Palm Oil Production Center (Efforts to Reduce the Potential of Environmental Pollution from Waste Abundance Towards Environmental Sustainable),” IOP Conf. Ser. Earth Environ. Sci., vol. 391, no. 1, 2019, doi: 10.1088/1755-1315/391/1/012054.

A. Tomczyk, Z. Sokołowska, and P. Boguta, “Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects,” Rev. Environ. Sci. Biotechnol., vol. 19, no. 1, pp. 191–215, 2020, doi: 10.1007/s11157-020-09523-3.

F. Inegbedion, “Estimation of the moisture content, volatile matter, ash content, fixed carbon and calorific values of saw dust briquettes,” MANAS J. Eng., vol. 10, no. 1, pp. 17–20, 2022, doi: 10.51354/mjen.940760.

I. W. K. Suryawan et al., “Municipal Solid Waste to Energy: Palletization of Paper and Garden Waste into Refuse Derived Fuel,” J. Ecol. Eng., vol. 23, no. 4, pp. 64–74, 2022, doi: 10.12911/22998993/146333.

M. Lubwama and V. A. Yiga, “Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda,” Renew. Energy, vol. 118, pp. 43–55, 2018, doi: 10.1016/j.renene.2017.11.003.

U. Wangrakdiskul, P. Khonkaew, and T. Wongchareonsin, “Use of the Spent Bleaching Earth from Palm Oil Industry in Non Fired Wall Tiles,” Int. J. Adv. Cult. Technol., vol. 3, no. 2, pp. 15–24, 2015, doi: 10.17703/ijact.2015.3.2.15.

S. M. Abdelbasir, A. I. Shehab, and M. A. A. Khalek, “Spent bleaching earth; recycling and utilization techniques: A review,” Resour. Conserv. Recycl. Adv., vol. 17, no. 2022, 2023, doi: 10.1016/j.rcradv.2022.200124.

T. Zhang, X. Chen, X. Zhao, Y. Gao, and Y. Song, “Preparation of briquette coal with a lubricating oil sludge as binder,” vol. 170, no. Iceep, pp. 1236–1239, 2018, doi: 10.2991/iceep-18.2018.218.

R. I. Muazu and J. A. Stegemann, “Biosolids and microalgae as alternative binders for biomass fuel briquetting,” Fuel, vol. 194, pp. 339–347, 2017, doi: 10.1016/j.fuel.2017.01.019.

G. L. Tihin, K. H. Mo, C. C. Onn, H. C. Ong, Y. H. Taufiq-Yap, and H. V. Lee, “Overview of municipal solid wastes-derived refuse-derived fuels for cement co-processing,” Alexandria Eng. J., vol. 84, no. November, pp. 153–174, 2023, doi: 10.1016/j.aej.2023.10.043.

N. Merry Mitan, M. Saifulazwan Ramlan, M. Zainul Hakim Nawawi, and Z. Kindamas, “Preliminary study on effect of oil additives in engine lubricant on four-stroke motorcycle engine,” Mater. Today Proc., vol. 5, no. 10, pp. 21737–21743, 2018, doi: 10.1016/j.matpr.2018.07.026.

O. A. Akogun, M. A. Waheed, S. O. Ismaila, and O. U. Dairo, “Co-briquetting characteristics of cassava peel with sawdust at different torrefaction pretreatment conditions,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–19, 2020, doi: 10.1080/15567036.2020.1752333.

A. Firdaus and B. Octavianus, “Biobrickets Made From Cassava Skin Waste Utilizing Banana Plastic Waste Glue and Water Hyacinth,” Indones. J. Eng. Sci., vol. 2, no. 2, pp. 007–013, 2021, doi: 10.51630/ijes.v2i2.14.

P. Kipngetich, R. Kiplimo, J. K. Tanui, and P. Chisale, “Effects of carbonization on the combustion of rice husks briquettes in a fixed bed,” Clean. Eng. Technol., vol. 13, no. February, 2023, doi: 10.1016/j.clet.2023.100608.

I. Staničić, J. Brorsson, A. Hellman, T. Mattisson, and R. Backman, “Thermodynamic Analysis on the Fate of Ash Elements in Chemical Looping Combustion of Solid Fuels─Iron-Based Oxygen Carriers,” Energy and Fuels, vol. 36, no. 17, pp. 9648–9659, 2022, doi: 10.1021/acs.energyfuels.2c01578.

S. K. Loh, K. Y. Cheong, and J. Salimon, “Surface-active physicochemical characteristics of spent bleaching earth on soil-plant interaction and water-nutrient uptake: A review,” Appl. Clay Sci., vol. 140, pp. 59–65, 2017, doi: 10.1016/j.clay.2017.01.024.

M. M. Manyuchi, C. Mbohwa, and E. Muzenda, “Value addition of coal fines and sawdust to briquettes using molasses as a binder,” South African J. Chem. Eng., vol. 26, no. August, pp. 70–73, 2018, doi: 10.1016/j.sajce.2018.09.004.

A. D. Moelyaningrum, H. D. Molassy, and I. K. Setyowati, “The formulation Robusta coffee bark Jember Indonesia for charcoal Briquettes as alternative energy : the comparison organic starch adhesive and anorganic adhesive,” J. Phys. Conf. Ser., vol. 1363, no. 1, 2019, doi: 10.1088/1742-6596/1363/1/012091.

N. Kongprasert, P. Wangphanich, and A. Jutilarptavorn, “Charcoal briquettes from Madan wood waste as an alternative energy in Thailand,” Procedia Manuf., vol. 30, pp. 128–135, 2019, doi: 10.1016/j.promfg.2019.02.019.

A. Zubairu and S. A. Gana, “Production and Characterization of Briquette Charcoal by Carbonization of Agro-Waste,” Energy and Power, vol. 4, no. 2, pp. 41–47, 2014, doi: 10.5923/j.ep.20140402.03.

R. Hudayarizka, U. Sholikah, and D. T. Budiarti, “Utilization of durian peels ( Durio zibethinus ) and lubricant treatment sludge as raw materials of Refuse-Derived Fuel,” vol. 8, no. 1, pp. 68–79, 2024, doi: 10.22515/sustinere.jes.v8i1.370.

Zaherunaja, E. B. D. Nazarudin, and A. Santi, “View of Waste-Derived Fuels as a Renewable Energy Source (Physical-Chemical Quantity-Quality) Compared to Coal,” Migr. Lett., vol. 21, no. 1, pp. 442–450, 2023, doi: 10.59670/ml.v21i1.5197.

R. R. Lokollo and J. R. Kelibulin, “Type of Mineral Deposits on Alteration Rocks using Petrography, X-Ray Fluorescence (XRF), and X-Ray Diffraction (XRD) Method in Geothermal Prospect in Tiouw Village, Maluku,” JPSE (Journal Phys. Sci. Eng., vol. 4, no. 2, pp. 37–44, 2020, doi: 10.17977/um024v4i22019p037.

R. Othman et al., “Evaluation of the sulphate resistance of foamed concrete containing processed spent bleaching earth,” Eur. J. Environ. Civ. Eng., vol. 26, no. 8, pp. 3632–3647, 2022, doi: 10.1080/19648189.2020.1809526.




Copyright (c) 2024 Riza Hudayarizka, Eka Masrifatus Anifah, Umi Sholikah, Ismi Khairunnissa Ariani, Siti Iniz Khairunisa Wijaya

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License